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Abstract. Let G be the special unitary group SU(3) and T a maximal torus of

G. For an irreducible G-representation V , the zero weight space, that is, the T -

fixed point space V T is considered as a representation of the Weyl group W of

G. In this paper, we first determine the dimension of the W -fixed space (V T )W .

As an application, we then provide a new estimate of the isovariant Borsuk-Ulam

constant cG. Indeed, we prove that 26/27 ≤ cG ≤ 1 for G = SU(3); this is a better

estimate than our previous one.

1. Introduction

Let G be a compact Lie group. Let V and W be (orthogonal) G-representations
and denote by S(V ) and S(W ) their unit spheres, called G-representation spheres. A
G-map f : S(V )→ S(W ) is called isovariant if it preserves the isotropy groups.

The isovariant Borsuk-Ulam constant cG is defined to be the supremum of a constant
c ∈ R such that

c(dimV − dimV G) ≤ dimW − dimWG

holds whenever there exists a G-isovariant map f : S(V ) → S(W ). Obviously, 0 ≤
cG ≤ 1. The determination of cG is an interesting and important problem for the
study of isovariant Borsuk-Ulam type theorems. Especially, a compact Lie group G

with cG = 1 is called a Borsuk-Ulam group. Wasserman [6] and Nagasaki-Ushitaki [5]
gave several examples of Borsuk-Ulam groups; in particular, any solvable compact Lie
group G is a Borsuk-Ulam group. However, a complete classification of Borsuk-Ulam
groups still remains as an open problem as well as the determination of cG. Thus the
estimation of the isovariant Borsuk-Ulam constant seems to be significant in order to
approach this problem.
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For any simple compact Lie group G with a maximal torus T , we define

dG = sup
V
{dimV T / dimV },

where V is taken over all nontrivial irreducible G-representations. In [3], we have
proved that cG ≥ 1−dG for any simple compact Lie group G and have also determined
the values of dG. In particular, we obtain dG = 1/(n + 1) for G = SU(n); hence
cSU(n) ≥ n/(n + 1). Thus, cSU(2) ≥ 2/3 and cSU(3) ≥ 3/4. However, these estimates
are not best possible. In fact, in [4], we have proved a better estimate cSU(2) ≥ 4/5. In
this paper, we shall show the following new estimate of cSU(3).

Theorem 1.1. cSU(3) ≥ 26/27.

Representation theory plays an important role in the proof of this result; in par-
ticular, the Weyl group fixed spaces of the zero weight representations of irreducible
representations of SU(3) are used. In this paper, we first provide a complete computa-
tion of the dimension of such Weyl group fixed spaces and then prove the theorem.

2. Basic facts from representation theory

In order to prove our theorem, we here recall necessary basic facts from representa-
tion theory. Let G̃ be the unitary group:

G̃ = U(3) = {A ∈M3(C) |A∗A = E }.
and G the special unitary group:

G = SU(3) = {A ∈M3(C) |A∗A = E, det A = 1}.
A maximal torus T̃ of G̃ is given by

T̃ =

⎧⎨⎩
⎛⎝t1 0 0

0 t2 0
0 0 t3

⎞⎠ ∣∣∣ |ti| = 1

⎫⎬⎭ ∼= S1 × S1 × S1.

A maximal torus T of G is given by

T =

⎧⎨⎩
⎛⎝t1 0 0

0 t2 0
0 0 t3

⎞⎠ ∣∣∣ t1t2t3 = 1, |ti| = 1

⎫⎬⎭ ∼= S1 × S1.

Let W̃ = N
eG(T̃ )/T̃ ∼= S3 be the Weyl group of G̃ and W = NG(T )/T ∼= S3 the

Weyl group of G. Taking the subgroup W1 of all permutation matrices in N
eG(T̃ ), we

obtain N
eG(T̃ ) = T̃ � W1 and W̃ ∼= W1. Since there is a natural inclusion

i : NG(T ) ⊂ N
eG(T ) = N

eG(T̃ ),
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we have an isomorphism ι : W → W1 such that the following diagram commutes, see
[1].

G ⊃ NG(T )
proj−−−−→ W

i

⏐⏐� ι

⏐⏐�∼=

G̃ ⊃ N
eG(T̃ )

proj−−−−→ W1

In particular, ι−1 is given as follows. Let w ∈W1 be a permutation matrix and σw ∈ S3

the corresponding permutation. Set

a(w) =

⎛⎝sgn(σw) 0 0
0 1 0
0 0 1

⎞⎠ ∈ G̃.

Then it follows that ι−1(w) = a(w)wT ∈W .
Let Ṽ = Ṽ (λ) be the irreducible (unitary) G̃-representation with highest weight

λ = (λ1, λ2, λ3) ∈ Λ,

where Λ is the weight lattice consisting of the nonincreasing sequences (λ1, λ2, λ3) of
integers, that is,

Λ = {λ ∈ Z
3 |λ1 ≥ λ2 ≥ λ3}.

It is well known that all irreducible G̃-representations are parametrized by Λ, see
for example [2]. Furthermore any irreducible G-representation V is obtained by the
restriction to G of some irreducible G̃-representation Ṽ (λ). We set V (λ) := resGṼ (λ).
Then the following is well known.

Proposition 2.1 ([2]). The following are equivalent.

(1) V (λ) ∼= V (μ) as G-representations.
(2) Ṽ (λ) ∼= Ṽ (μ) ⊗ Cdetd as G̃-representations for some integer d. Here det :

G̃ → C is the determinant homomorphism and Cdetd is the 1-dimensional
representation defined by detd.

(3) λ− μ = d(1, 1, 1) for some integer d.

Let V = V (λ) be an irreducible G-representation. Then T -fixed space V T is a
W -representation, called the zero weight representation induced by V . On the other
hand, Ṽ (λ)T is a representation of N

eG(T ) (= N
eG(T̃ )) and by restricting to W1, we may

regard Ṽ (λ)T as a W1-representation. Since V T = Ṽ (λ̃)T as vector spaces, we see

Proposition 2.2 ([1]). V T = Ṽ (λ)T 
= 0 if and only if |λ| := λ1 +λ2 +λ3 ≡ 0 (mod 3).
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Let R0 be the set of isomorphism classes of irreducible G-representations V with
V T 
= 0 and put the set

Λ0 = {λ ∈ Z
3 |λ1 ≥ λ2 ≥ λ3, λ1 + λ2 + λ3 = 0} ⊂ Λ.

Proposition 2.3. R0 is parametrized by Λ0.

Proof. We define a map I : Λ0 → R0 by I(λ) = V (λ).
Injectivity: If V (λ) ∼= V (μ), then λ − μ = d(1, 1, 1) for some integer d. Since

|λ− μ| = 0, it follows that d = 0. Hence λ = μ.
Surjectivity: Take any G-representation V = resGṼ (λ̃) with V T 
= 0 and λ̃ ∈ Λ.

Then, by Proposition 2.2, λ̃1 + λ̃2 + λ̃3 = 3d for some integer d. Put λi = λ̃i− d. Then
λ1 + λ2 + λ3 = 0 and we have resGṼ (λ) ∼= V by Proposition 2.1. This implies that
I(λ) = V . �

For a nonnegative integer d, set

Λ(d) = {(3d− k, k, 0) | 0 ≤ k ≤ [3d/2]} and Λ1 =
⋃
d≥0

Λ(d) ⊂ Λ,

where [x] denotes the largest integer not exceeding x. We see the following by Propo-
sition 2.1, see also [1].

Proposition 2.4. For λ = (λ1, λ2, λ3) ∈ Λ0, define λ̃ = (λ1−λ3, λ2−λ3, 0) ∈ Λ(d) ⊂
Λ1, where d = −λ3.

(1) The correspondence λ �→ λ̃ gives a bijection between Λ0 and Λ1.
(2) The W1-representation Ṽ (λ̃)T is regarded as a W -representation via ι. Then

there is an isomorphism

V (λ)T ∼= Ṽ (λ̃)T ⊗ Csgnd =

{
Ṽ (λ̃)T d : even
Ṽ (λ̃)T ⊗ Csgn d : odd,

where sgn : W → C is the sign representation.

3. The W -fixed space of the zero weight representation

In this section, set N = NG(T ) and W = N/T . Let Ṽ = Ṽ (λ) and V = V (λ) =
resGṼ (λ) for λ ∈ Λ1. We shall investigate the W -fixed space (V T )W = V N of the
W -representation V T by the method of [1]; we call this method the Ariki-Matsuzawa-
Terada algorithm (AMT-algorithm for short). In the case of G̃, the AMT-algorithm
gives the irreducible decomposition of Ṽ T as W1-representations, which leads to the
irreducible decomposition of V T as W -representations by Proposition 2.4.
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The AMT-algorithm consists of three steps. The first step is to describe Ṽ as a
linear combination of the symmetric tensor representations Sk = Sk(C3

nat), where C3
nat

is the natural representation of G̃ on C
3. According to [7, 1], we have

Proposition 3.1. Let λ = (λ1, λ2, 0) ∈ Λ1. Then

Ṽ (λ) = Sλ1 ⊗ Sλ2 − Sλ1+1 ⊗ Sλ2−1

in the representation ring R(G̃). Here if k < 0, then we set Sk = 0.

The second step is to decompose (Sλ1 ⊗ Sλ2)T into a direct sum of permutation
representations as W1-representations, where λ1 ≥ λ2 ≥ λ3 = 0 and λ1 + λ2 = 3d. A
basis of Sλ1 ⊗ Sλ2 as a vector space is given by

B =

⎧⎨⎩eα1 ⊗ eα2 := (eα11
1 eα12

2 eα13
3 )⊗ (eα21

1 eα22
2 eα23

3 )
∣∣∣ 3∑

j=1

αij = λi (i = 1, 2)

⎫⎬⎭ .

The action of t ∈ T on eα1 ⊗ eα2 is given by

t · (eα1 ⊗ eα2) = (tα11+α21
1 tα12+α22

2 tα13+α23
3 )eα1 ⊗ eα2 .

Thus we obtain that eα1 ⊗ eα2 ∈ (Sλ1 ⊗Sλ2)T if and only if α1j +α2j = d (j = 1, 2, 3).
Therefore a basis of (Sλ1 ⊗ Sλ2)T as a vector space is given by

B0 =
{

eα1 ⊗ eα2 ∈ B
∣∣∣ α1j + α2j = d (j = 1, 2, 3)

}
.

The W1-action on B0 is given by permutations on {ei}, or equivalently by column
permutations on the 2 × 3 matrices (αij). Considering the lexicographical order on
columns of (αij), we take matrices with nonincreasing columns as representatives of
the orbit set B0/W1, and denote by B0 the set of such representatives. Furthermore,
matrices (αij) ∈ B0 correspond bijectively to integer sequences (c0, . . . , cd) such that(

λ1

λ2

)
=

d∑
i=0

ci

(
d− i

i

)
, 0 ≤ ci ≤ 3,

d∑
i=0

ci = 3.

Let Cλ be the set of such integer sequences (c0, . . . , cd). There are three types of
(ci) ∈ Cλ: (1) ci = 3 for some i and the others are 0, (2) ci = 2 and cj = 1 for some
i 
= j and the others are 0, (3) ci = cj = ck = 1 for distinct i, j, k and the others are
0. Let Lλ be the set of (ci) ∈ Cλ with type (1), Mλ the set of (ci) ∈ Cλ with type (2)
and Nλ the set of (ci) ∈ Cλ with type (3). Set cλ = #Cλ, lλ = #Lλ, mλ = #Mλ,
nλ = #Nλ. Clearly cλ = lλ + mλ + nλ. Note also that if d ≡ 0 (mod 3), then cd/3 = 3

33



Ikumitsu NAGASAKI

and lλ = 1, and lλ = 0 otherwise. Thus, according to [1], we obtain the following
decomposition into permutation representations:

Proposition 3.2 ([1]). (Sλ1 ⊗ Sλ2)T ∼= lλC⊕mλC[S3/S2]⊕ nλC[S3].

The third step is the irreducible decomposition of a permutation representation. As
is well-known, S3 has three irreducible representations: C, Csgn and one 2-dimensional
representation, say U . The following decompositions are obtained from representation
theory.

Proposition 3.3. (1) C[S3/S2] ∼= C⊕ U .
(2) C[S3] ∼= C⊕ Csgn ⊕ 2U .

Combining these propositions, we obtain

Corollary 3.4.

(Sλ1 ⊗ Sλ2)T ∼= cλC⊕ nλCsgn ⊕ (mλ + 2nλ)U.

Any λ ∈ Λ(d) is described as λ = (3d− k, k, 0) for some 0 ≤ k ≤ [3d/2].

Definition. We set, for λ = (3d− k, k, 0),

Ṽ (k, d) = Ṽ (λ)

V (k, d) = resGṼ (k, d).

By Proposition 2.4, we have

dimV (k, d)N = dim(V (k, d)T )W = dim(Ṽ (k, d)T ⊗ Csgnd)W .

Set c(k, d) = cλ, l(k, d) = lλ, m(k, d) = mλ and n(k, d) = nλ. By Proposition 3.1, we
have Ṽ (k, d) = S3d−k⊗Sk−S3d−k+1⊗Sk−1. Since Csgn⊗Csgn = C and U⊗Csgn = U ,
we obtain the following result by Proposition 2.4 and Corollary 3.4,

Proposition 3.5.

dimV (k, d)N =

{
c(k, d)− c(k − 1, d) d : even
n(k, d)− n(k − 1, d) d : odd

for 0 ≤ k ≤ [3d/2].

For example, the values of r(k, d) := dimV (k, d)N/dimV (k, d) for 1 ≤ d ≤ 4 and
0 ≤ k ≤ [3d/2] are given in Tables below. Recall

dimV (k, d) = (2k − 3d− 1)(k − 3d− 2)(k + 1)/2
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by the dimension formula.

k dimV (k, d)N dimV (k, d) r(k, d)

0 0 10 0

1 0 8 0

Table 1. d = 1

k dimV (k, d)N dimV (k, d) r(k, d)

0 1 28 1/28

1 0 35 0

2 1 27 1/27

3 0 10 0

Table 2. d = 2

k dimV (k, d)N dimV (k, d) r(k, d)

0 0 55 0

1 0 80 0

2 0 81 0

3 1 64 1/64

4 0 35 0

Table 3. d = 3

k dimV (k, d)N dimV (k, d) r(k, d)

0 1 91 1/91

1 0 143 0

2 1 162 1/162

3 1 154 1/154

4 1 125 1/125

5 0 81 0

6 1 28 1/28

Table 4. d = 4

We next note the following.

Lemma 3.6. Let k′ = 3d− 2k and d′ = 2d− k, where 0 ≤ k ≤ [3d/2].

(1) 0 ≤ k′ ≤ [3d′/2], and if k > d, then k′ < d′.
(2) V (k, d) ∼= V (k′, d′), where V (k, d) is the complex conjugate representation of

V (k, d).
(3) dimV (k, d) = dimV (k′, d′) and dimV (k, d)N = dimV (k′, d′)N .

Proof. (1) is straightforward.
(2) Since V (k, d) ∼= V (λ) for λ = (2d − k, k − d,−d) ∈ Λ0, the highest weight of

V (k, d) is given by λ∗ = (d, d− k, k − 2d) ∈ Λ0. Hence we see that V (k, d) ∼= V (μ) for
μ = (3d′ − k′, k′, 0) = (3d− k, 3d− 2k, 0) ∈ Λ1.

(3) This follows from (2). �
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As an example, we see that r(6, 4) = r(0, 2) as in Tables 2 and 4. Thus, by Lemma
3.6, we may discuss the estimation only in the range of 0 ≤ k ≤ d.

The next theorem and its corollary give a complete computation of dimV N for all
irreducible G-representations V .

Theorem 3.7. Let V (k, d) be as before, where d ≥ 0 and 0 ≤ k ≤ d. Then

dimV (k, d)N =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
k

2

]
−

[
k − 1

3

]
d : even

[
k − 1

2

]
−

[
k − 1

3

]
d : odd

Proof. If d = 0, then k = 0, and then V (k, d) is trivial, and so dimV (k, d)N = 1. In the
case of d = 1, it is clear from Table 1. Fix d ≥ 2 and set C(k) = Cλ for λ = (3d−k, k, 0),
0 ≤ k ≤ d. We first compute c(k, d). If k = 0, then C(0) consists of only one element
(3, 0, . . . , 0); hence c(0, d) = 1. In the following, assume k ≥ 1. Define

imax(ci) := max{i | ci 
= 0}
for (ci) ∈ C(k). Let t = imax(ci) for (ci) ∈ C(k − 1). Since

(
t t+1

. . . , ct − 1, 1, 0, . . . , 0 ) ∈ C(k),

a function S : C(k − 1)→ C(k) can be defined by

S : (
t t+1

. . . , ct, 0 , . . . , 0 ) �→ (
t t+1

. . . , ct − 1, 1, 0, . . . , 0 ).

It is easily seen that S is injective. Since S(C(k − 1)) consists of (ci) ∈ C(k) with
imax(ci) = 1, it follows that C(k)�S(C(k− 1)) consists of (ci) such that cs = 1, ct = 2
for some s, t (s < t and s + 2t = k) or ct = 3 for some t (3t = k). Thus this set
corresponds bijectively to

D(k) := {(s, t) ∈ Z
2 | s + 2t = k, 0 ≤ s ≤ t ≤ d}.

As easily seen, (s, t) ∈ D(k) are corresponding bijectively to integers t such that k/3 ≤
t ≤ k/2, and this inequality is equivalent to [(k + 2)/3] ≤ t ≤ [k/2]. Consequently,
when d is even, we obtain

dimV (k, d)N = c(k, d)− c(k − 1, d) =
[
k

2

]
−

[
k − 1

3

]
.
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Similarly, we set N (k) := Nλ for λ = (3d− k, k, 0). Clearly if d = 1, then C(k) = ∅
for k = 0, 1, and so dimV (k, d)N = 0. In the following, assume d ≥ 3. For any
(ci) ∈ N (k − 1), let u = imax(ci). Since

(
u u+1

. . . , 0, 1, 0, . . . , 0 ) ∈ N (k),

there is an injective function T : N (k − 1)→ N (k) defined by

T : (
u u+1

. . . , 1, 0, . . . , 0 ) �→ (
u u+1

. . . , 0, 1, 0, . . . , 0 ).

Hence N (k) � T (N (k − 1)) consists of elements

(ci) = (
s t t+1

. . . , 1, . . . , 1, 1, . . . )

with s + 2t + 1 = k and 0 ≤ s < t < d. This set corresponds bijectively to

E(k) := {(s, t) ∈ Z
2 | s + 2t + 1 = k, 0 ≤ s < t < d},

and the elements of E(k) correspond bijectively to integers t such that (k− 1)/3 < t ≤
(k − 1)/2 or equivalently [(k + 2)/3] ≤ t ≤ [(k − 1)/2]. Consequently, when d is odd,
we obtain

dimV (k, d)N = n(k, d)− n(k − 1, d) =
[
k − 1

2

]
−

[
k − 1

3

]
.

�

Corollary 3.8. If d < k ≤ [3d/2], then

dimV (k, d)N =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
d

2

]
−

[
k − 1

3

]
k : even

[
d− 1

2

]
−

[
k − 1

3

]
k : odd

Proof. This follows from Lemma 3.6. �

4. Proof of Theorem 1.1

In this section, G̃ = U(3), G = SU(3), Ñ = N
eG(T̃ ) = T̃ � W1 and N = NG(T ) as

before. Since N is solvable, we have

Lemma 4.1. cN = 1.
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We define

d(G,N) = sup
V
{dimV N/dimV },

where V is taken over all nontrivial irreducible G-representations. The following propo-
sition can be proved by a similar argument of [3].

Proposition 4.2. cG ≥ 1− d(G,N).

Thus Theorem 1.1 follows from the next result.

Theorem 4.3. d(G,N) = 1/27.

The rest of this section is devoted to the proof of Theorem 4.3. First we remark the
following.

Lemma 4.4. dimV (k, d)N ≤ k + 6
6

for any d ≥ 1 and 0 ≤ k ≤ d.

Proof. It follows from Theorem 3.7 that

dimV (k, d)N ≤
[
k

2

]
−

[
k − 1

3

]
.

Furthermore a case-by-case consideration shows[
k

2

]
−

[
k − 1

3

]
≤ k + 6

6
.

�

Next we show the following.

Lemma 4.5. If d ≥ 3, then

r(k, d) = dimV (k, d)N/dimV (k, d) ≤ 1/28

for 0 ≤ k ≤ d.

Proof. By Lemma 4.4 and

dimV (k, d) = (2k − 3d− 1)(k − 3d− 2)(k + 1)/2,

it suffices to show that
(k + 6)/6

(2k − 3d− 1)(k − 3d− 2)(k + 1)/2
≤ 1/28,

or equivalently,

6k3 − (9d + 27)k2 + (27d2 − 37)k + 27d2 + 27d− 162 ≥ 0
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for 0 ≤ k ≤ d. We consider the function

f(x) = 6x3 − (9d + 27)x2 + (27d2 − 37)x + 27d2 + 27d− 162.

Then
d2f

dx2
(x) = −18(1 + 3d− 2x) < 0

for 0 ≤ x ≤ d and so f is upper convex. Therefore it follows that

f(k) ≥ min{f(0), f(d)}.
It is easy to see that

f(0) = 27(d2 + d− 6) ≥ 0 if d ≥ 2

and

f(d) = 2(3d3 + 9d2 − 5d− 81) > 0 if d ≥ 3.

Consequently it turns out that f(k) ≥ 0 if d ≥ 3. �

Proof of Theorem 4.3. By a similar argument of [3], it suffices to consider unitary G-
representations in order to compute d(G,N). This implies

d(G,T ) = sup{r(k, d) | d ≥ 1, 0 ≤ k ≤ [3d/2]}.
By Lemma 3.6, we may assume that 0 ≤ k ≤ d. Thus

d(G,T ) = sup{r(k, d) | d ≥ 1, 0 ≤ k ≤ d}.
By Lemma 4.5,

sup{r(k, d) | d ≥ 3, 0 ≤ k ≤ d} ≤ 1/28.

Looking at Tables 1 and 2, we see that the maximum of r(k, d) is r(2, 2) = 1/27 among
the cases d = 1, 2. Eventually we obtain d(G,T ) = 1/27. �

Remark. Since V (2, 2) ∼= V (2, 2), V (2, 2) is only one irreducible G-representation at-
taining the maximum 1/27.
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