Equivariant maps between C_{2p}-representation spheres for an odd prime p

Ikumitsu NAGASAKI 1)

Abstract. In the previous research, we discussed a necessary and sufficient condition for the existence of a G-map between unitary representation spheres of a cyclic group C_{pq}, where p and q are distinct primes. In this paper, we study a similar problem for orthogonal representation spheres of C_{pq}. In particular, we treat the case of C_{2p}, where p is an odd prime. As a result, we show that some results in the unitary case do not hold in the orthogonal case.

1. Background

Let G be a finite group. In equivariant topology, the following question is fundamental and important for application to topological problems.

Question. Given G-representation spheres $S(V)$ and $S(W)$, does there exist a G-map $f : S(V) \to S(W)$ or not?

For example, a kind of non-existence result on an equivariant map plays a crucial role in the proof of Furuta’s 10/8-theorem [3]. If the G-fixed point set $S(W)^G$ is not empty, then clearly a G-map always exists, and if $S(V)^G \neq \emptyset$ and $S(W)^G = \emptyset$, then there are no G-maps. Therefore we assume that representations V and W are G-fixed-point-free; i.e., $V^G = W^G = 0$ unless otherwise stated.

Equivariant obstruction theory provides several results on the above question, for example, see [5, 6, 9]. However a complete answer is not obtained at present since the computation of obstruction classes is difficult in general. In [7], we have treated unitary representations of a cyclic group C_{pq}, where p, q are distinct primes, and give an answer of the question as follows:

Proposition 1.1 ([7]). Let $G = C_{pq}$ and V and W be unitary G-representations with $V^G = W^G = 0$. Then there exists a G-map $f : S(V) \to S(W)$ if and only if the following conditions hold.

1) Department of Mathematics, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangicho, Sakyo-ku, Kyoto 606-0823, Japan. e-mail: nagasaki@koto.kpu-m.ac.jp

2020 Mathematics Subject Classification. Primary 57S17; Secondary 55M20, 55S91.
(1) \(\dim V^C \leq \dim W^C \) and \(\dim V^C_\mu \leq \dim W^C_\mu \).

(2) If \(\dim W^C = 0 \) or \(\dim W^C_\mu = 0 \), then \(\dim V \leq \dim W \).

In this paper, we consider orthogonal \(C_{pq} \)-representations. If \(p, q \) are odd primes, then the same result holds because any orthogonal representation of a finite group of odd order has a complex structure. On the other hand, if \(q = 2 \) and \(p \) is an odd prime, then Proposition 1.1 does not hold as mentioned in section 3. One of the purposes of this paper is to present such a counterexample.

2. Preliminary facts on \(C_n \)-maps

Let us recall irreducible orthogonal representations of a cyclic group \(C_n \) of order \(n \). Let \(a \) be a generator of \(C_n \). By Serre [8], irreducible unitary \(C_n \)-representations \(U_k (= \mathbb{C}) \), \(k \in \mathbb{Z}/n \), are given by \(az = \xi_n^k z \), \(z \in U_k \), where \(\xi_n = \exp(2\pi \sqrt{-1}/n) \). We set \(T_k = \text{res}_U U_k \). Then (2-dimensional) irreducible orthogonal \(C_n \)-representations are given by \(T_k \) when \(k \not\equiv 0 \pmod{n} \) or \(k \not\equiv n/2 \pmod{n} \) if \(n \) is even. If \(n \) is even and \(k = n/2 \), there is a 1-dimensional representation \(\mathbb{R} \), where \(\varepsilon : C_n \to \{\pm 1\} \) is the sign homomorphism. The action of \(C_n \) on \(\mathbb{R} \) is given by \(gx = \varepsilon(g)x \) for any \(g \in C_n \) and \(x \in \mathbb{R} \); in particular, \(ax = -x \). Not that \(T_k \cong T_l \) as orthogonal representations if \(kl \equiv 1 \pmod{n} \). Note \(T_0 = 2\mathbb{R} \) and \(T_{n/2} = 2\mathbb{R} \) if \(n \) is even. Summarizing these facts, we have

Proposition 2.1. All orthogonal irreducible representations of \(C_n \) are given as follows.

1. When \(n \) is odd, there are \((n-1)/2 \) 2-dimensional irreducible representations \(T_k \) \((1 \leq k \leq (n-1)/2) \) and there is a 1-dimensional trivial representation \(\mathbb{R} \).
2. When \(n \) is even, there are \((n-2)/2 \) 2-dimensional irreducible representations \(T_k \) \((1 \leq k \leq n/2-1) \) and there are 1-dimensional representations \(\mathbb{R} \) and \(\mathbb{R} \).

We next discuss the existence of a \(G \)-map between \(S(U_k) \) and \(S(U_l) \), where \(k, l \not\equiv 0 \pmod{n} \). Some special cases are described in [7].

Proposition 2.2. Let \(G = C_n \). There exists a \(G \)-map \(f : S(U_k) \to S(U_l) \) if and only if \((k,n) \) divides \((l,n) \), where \((k,n) \) denotes the greatest common divisor of \(k \) and \(n \).

Proof. Set \(d = (k,n) \) and \(e = (l,n) \). If there exists a \(G \)-map \(f : S(U_k) \to S(U_l) \), then for any \(x \in S(U_k) \), it follows that

\[
G_x = \text{Ker} U_k = \langle a^{n/d} \rangle \cong C_d \leq G_f(x) = \text{Ker} U_l = \langle a^{n/e} \rangle \cong C_e.
\]
Hence \(d \) divides \(e \).

We show the converse. Assume that \(d = (k, l) \) divides \(e = (l, n) \). Recall that the action of the generator \(a \in G \) on \(U_k \) is given by \(az = \xi_k^h z, z \in U_k \). Therefore one see that \(K := \text{Ker} U_k = C_d \leq G \). Furthermore \(U_k \) is regarded as \(G/K \)-representation and \(G/K \cong C_{n/d} \) acts freely on \(U_k \). By assumption, it follows that \(L := \text{Ker} U_l \geq K \) and \(G/K \) acts on \(U_l \) with the kernel \(L/K \). If there exists a \(G/K \)-map, then one may assume that \((k, n) = 1 \). Take an integer \(k' \) with \(kk' \equiv 1 \mod n \) and define a map \(f : S(U_k) \to S(U_l) \) by \(f(z) = z^{k'l} \) for \(z \in U_k \). One can easily see that this map is \(G \)-equivariant. \(\square \)

Remark. If we set \((0, n) = n \), then the above proposition holds for \(k = 0 \) or \(l = 0 \).

By restricting the ground field \(\mathbb{C} \) to \(\mathbb{R} \), we obtain

Corollary 2.3. There exists a \(G \)-map \(f : S(T_k) \to S(T_l) \) if and only if \((k, n) \) divides \((l, n) \).

3. The case of \(C_{2p} \)

In this section, \(G \) is a cyclic group \(C_{2p} \) of order \(2p \), where \(p \) is an odd prime. Let \(V \) and \(W \) be orthogonal \(G \)-representations with \(V^G = W^G = 0 \). We consider the question whether a \(G \)-map from \(S(V) \) to \(S(W) \) exists. The non-trivial irreducible representations are:

\[
T_i \quad (1 \leq i \leq p - 1), \quad \mathbb{R}_\varepsilon.
\]

Note that \(\text{Ker} T_i = 1 \) for odd \(i \) and \(\text{Ker} T_i = C_2 \) for even \(i \). By the same argument of [7], we obtain the following fact.

Proposition 3.1. If there exists a \(G \)-map \(f : S(V) \to S(W) \), then

\[(C1) \quad \dim V^{C_p} \leq \dim W^{C_p} \quad \text{and} \quad \dim V^{C_2} \leq \dim W^{C_2}.
\]

\[(C2) \quad \text{If } \dim W^{C_p} = 0 \quad \text{or} \quad \dim W^{C_2} = 0, \quad \text{then } \dim V \leq \dim W.
\]

We would like to consider the converse. We first note that

Theorem 3.2. In addition to (C1) and (C2), if \(\dim W^{C_p} \geq 2 \) is satisfied, then there exists a \(G \)-map \(f : S(V) \to S(W) \).

Proof. Since the proof is similar with [7], we only give an outline. Let

\[
V = a_1 T_1 \oplus \cdots \oplus a_{p-1} T_{p-1} \oplus c \mathbb{R}_\varepsilon \quad (a_i \geq 0, \ c \geq 0)
\]
be the irreducible decomposition of V. For any subgroup K of G, let $V(K)$ denote the direct sum of irreducible representations with kernel K in the irreducible decomposition of V. So we have

$$V(1) = \bigoplus_{i: \text{odd}} a_i T_i \quad V(C_2) = \bigoplus_{i: \text{even}} a_i U_i \quad V(C_p) = c \mathbb{R}.$$

Hence $V = V(1) \oplus V(C_2) \oplus V(C_p)$. Similarly we obtain $W = W(1) \oplus W(C_2) \oplus W(C_p)$. Note also that $V^{C_2} = V(C_2)$ and $V^{C_p} = V(C_p)$. If dim $W(C_2) = 0$, then $V(C_2) = 0$ and one can easily see the existence of a G-map from condition (C2). Assume dim $W(C_2) > 0$; in fact dim $W(C_2) \geq 2$. Let C be C_p or C_2. Since $W^C = W(C)$, it follows that dim $W^C \geq 2$ by assumption. Then one can find a G-map $h : S(W) \to S(W)$ with deg $h = 0$ using equivariant obstruction theory.

One can construct a G-map $f^{>1} : S(V)^{>1} \to S(W)$, where

$$S(V)^{>1} = S(V)^{C_p} \coprod_{i: \text{even}} S(V)^{C_2}$$

is the singular set of $S(V)$. By composing $f^{>1}$ with h, it follows that the equivariant obstruction to the extension of $h \circ f^{>1}$ vanishes. Hence there exists a G-map $f : S(V) \to S(W)$.

From the above proposition, the remaining case is

$$\dim W^{C_p} = 1 \text{ and } \dim W^{C_2} > 0.$$

Proposition 3.3. In this case, for any G-map $h : S(W) \to S(W)$, it follows that $\deg h^{C_p} = \pm 1$ and $\deg h \equiv \pm 1 \mod p$. In particular $\deg h \neq 0$.

Proof. Note that $\deg h^G = 1$ since $S(W)^G = \emptyset$. Since

$$h^{C_p} : S(W)^{C_p} = S^0 \to S(W)^{C_p} = S^0$$

is $G/C_p \cong C_2$-map and C_2 acts freely on $S(W)^{C_p}$, it follows that $\deg h^{C_p} = \pm 1$. By the Burnside relation, see [1, 2], we obtain $\deg h^{C_2} \equiv 1 \mod p$ and

$$\deg h + \deg h^{C_2} + (p-1) \deg h^{C_p} + (p-1) \deg h^G \equiv 0 \mod 2p.$$

Reducing this to mod p, we have

$$\deg h \equiv - \deg h^{C_2} + \deg h^{C_p} + \deg h^G \mod p \equiv \deg h^{C_p} \equiv \pm 1 \mod p.$$

□
This result means that the argument in Theorem 3.2 is not available; namely, we cannot prove the vanishing of the obstruction.

As an easy corollary, we obtain a variation of Borsuk-Ulam results, cf. [10].

Corollary 3.4. In the above situation, if $W \subseteq U$, then there are no G-maps from $S(U)$ to $S(W)$.

Proof. If there exists a G-map $f : S(U) \to S(W)$, then $h := i \circ f : S(W) \to S(W)$ has a non-zero degree, where i is the inclusion. On the other hand, by dimensional reason, $\deg h = 0$; this is a contradiction. □

Under the condition $\dim V^{C_2} \leq \dim W^{C_2}$, we next discuss the question in the following two cases:

1. $\dim V^{C_p} = \dim W^{C_p} = 1$.
2. $\dim V^{C_p} = 0$ and $\dim W^{C_p} = 1$.

we here provide two examples. The first example shows that Proposition 1.1 does not hold in orthogonal case. Let $G = C_{2p}$ as before.

Example 3.5. Let $V = T_1 \oplus T_1 \oplus \mathbb{R}_e$ and $W = T_2 \oplus \mathbb{R}_e$. There are no G-maps from $S(V)$ to $S(W)$.

Proof. Suppose that there exists a G-map $f : S(V) \to S(W)$. Set $U = T_1 \oplus \mathbb{R}_e$. Consider a C_p-map $h := \text{res}_{C_p} f|_{S(U)} : S(U) \to S(W)$. Then $\deg h \equiv \pm 2 \mod p$. In fact, $h^{C_p} = \pm id$ and there is a G-map $k : S(U) \to S(W)$ with $\deg k = \pm 2$ and $k^{C_p} = h^{C_p}$.

By a result of equivariant obstruction theory [1, 2], for any G-map $h : S(U) \to S(W)$, it follows that $\deg h - \deg k \equiv 0 \mod p$. As a result, we have $\deg h \neq 0$.

On the other hand, there exists a 3-disk $D^3 \subset S(V)$ such that $\partial D^3 = S(U)$, and so $\deg h = 0$; this is a contradiction. In fact, D^3 can be taken as follows. Note that

$$S(V) \cong S(T_1) \times D(U) \cup D(T_1) \times S(U) \subset \mathbb{R}^2 \times \mathbb{R}^3$$

$$= \{(x, y) \mid \|x\| = 1, \|y\| \leq 1\} \cup \{(x, y) \mid \|x\| \leq 1, \|y\| = 1\},$$
and $S(U)$ is regarded as $0 \times S(U) = \{(0, y) \mid \|y\| = 1\}$. Consider the following sets:

$$D = \{(1, y) \mid \|y\| \leq 1\} \cong D^3$$
and $C = \{(t, y), 0 \leq t \leq 1, \|y\| = 1\} \cong I \times S(U)$.

By attaching C to D on $\partial D = 1 \times S(U)$, we obtain $X = C \cup_{1 \times S(U)} D$. Then $X \cong D^3$ and $\partial X = S(U)$. □
Remark. By [4], h is equivariantly desuspended to a map $h' : S(T_1) \to S(T_2)$ as C_p-maps. This fact also shows that $\deg h \neq 0$.

The next example is a counterexample to the Borsuk-Ulam theorem.

Example 3.6. Let $V = T_1 \oplus T_2$ and $W = T_2 \oplus \mathbb{R}_\varepsilon$. There exists a G-map $f : S(V) \to S(W)$.

Proof. Note that

$$S(V) \cong S(T_1) \ast S(T_2) = D(T_1) \times S(T_2) \cup S(T_1) \times D(T_2).$$

Take a G-map

$$\bar{h} : S(T_2) = 0 \times S(T_2) (\subset S(V)) \to S(T_2) = S(T_2) \times 0 (\subset S(W))$$

with even degree. For example, one can take a G-map defined by $\bar{h}(z) = z^{p+1}$ whose degree $\deg \bar{h} = p + 1$ is even.

In the same way as the proof of Example 3.5, we can take a 2-disk $D^2 \subset S(V)$ whose boundary is $S(T_2) = 0 \times S(T_2) \cong S^1$. Set $S_2 := D^2 \cup aD^2 \subset S(V)$ which is homeomorphic to a 2-sphere S^2, where a is a generator of G.

Since \bar{h} is of even degree, we can construct a (non-equivariant) map $h : S_2 \to S(W)$ extending \bar{h} such that $\deg h = 0$. In fact, we can change the degree of h by any even number.

Finally, take a 3-disk $D^3 \subset S(V)$ which is a region between D^2 and aD^2; hence S_2 is the boundary of D^3. Then it follows that

$$S(V) = \bigcup_{g \in G} (gD^3).$$

Since $\deg h = 0$, there exists a (non-equivariant) map $\tilde{h} : D^3 \to S(W)$ extending h. Using this, we can define a G-map

$$f := \bigcup_{g \in G} (g \cdot \tilde{h}) : S(V) = \bigcup_{g \in G} (gD^3) \to S(W)$$

by $f(x) = g\tilde{h}(g^{-1}x)$ for any $x \in gD^3$. One can easily check that this map is a well-defined G-map. □

Corollary 3.7. There exists a G-map $g : S(T_1 \oplus T_1) \to T_2 \oplus \mathbb{R}_\varepsilon$.

Proof. By Proposition 2.2, there is a G-map $k : S(T_1) \to S(T_2)$. This G-map k induces a G-map $h = id \ast k : S(T_1 \oplus T_1) \to S(T_1 \oplus T_2)$. Composing h with f, we obtain a G-map $g = f \circ h$. □
Remark. There are no \(G \)-maps from \(S(T_1 \oplus T_1) \) to \(S(T_1 \oplus \mathbb{R}_e) \) because the condition (C2) of Proposition 3.1 is not satisfied.

Conflict of Interest. The author has no conflicts of interest directly relevant to the content of this article.

References

[6] I. Nagasaki, Elementary abelian \(p \)-groups are the only finite groups with the Borsuk-Ulam property, J. Fixed Point Theory Appl. 21 (2019), Article 16.

