Remarks on Equivariant and Isovariant Maps between Representations

Ikumitsu NAGASAKI ${ }^{1)}$

Abstract

In this note, we consider the existence problem of equivariant or isovariant maps between representation spheres. In particular, we give a necessary and sufficient condition for the existence of an equivariant map between unitary representation spheres of a cyclic group $C_{p q}$, where p, q are distinct primes.

1. The existence problem of $C_{p q}$-maps

The existence or non-existence problem of equivariant maps is a fundamental and important topic in equivariant topology, and many results are known up to the present. However, giving a necessary and sufficient condition for the existence of an equivariant map is not so easy in general. Recently, Marzantowicz, de Mattos and dos Santos [6] discuss a necessary and sufficient condition of the existence of an equivariant map for a torus and a p-torus. In this note, we deal with the case of $C_{p q}$-maps, where p, q are distinct primes.

First, we recall well-known results on the existence problem. Let G be a compact Lie group and V an (orthogonal) representation of G. We denote by $S V$ the representation sphere of V, which is defined as the unit sphere of V. The following fact is proved by equivariant obstruction theory; for example, see [2].

Proposition 1.1. Let V and W be (orthogonal) representations of G. If $\operatorname{dim} V^{H} \leq$ $\operatorname{dim} W^{H}$ for every (closed) subgroup H of G, then there exists a G-map $f: S V \rightarrow S W$.

The converse is not true in general, but in some special cases, the converse holds. Such kind of results are brought from Borsuk-Ulam type theorems. We state two Borsuk-Ulam type theorems; see [3], [4], [5], [11] for more details.

[^0]Proposition 1.2. Assume that G acts freely on $S V$ and $S W$. If there exists a G-map $f: S V \rightarrow S W$, then $\operatorname{dim} V \leq \operatorname{dim} W$ holds.

Proposition 1.3. Let G be a torus T^{n} or a p-torus C_{p}^{n}. Assume that $S V$ and $S W$ are G-fixed point free, i.e., $S V^{G}=S W^{G}=\emptyset$. If there exists a G-map $f: S V \rightarrow S W$, then $\operatorname{dim} V \leq \operatorname{dim} W$ holds.

Marzantowicz, de Mattos and dos Santos [6] give a necessary and sufficient condition for the existence of an equivariant map in the case of G being a torus or a p-torus. In particular, the following result is deduced from their results.

Corollary 1.4. Let G be a torus T^{n} or a p-torus C_{p}^{n}. Let $S V$ and $S W$ be G-fixed point free representation spheres. Then there exists a G-map $f: S V \rightarrow S W$ if and only if $\operatorname{dim} V^{H} \leq \operatorname{dim} W^{H}$ holds for every closed subgroups H of G.

Proof. Note that G / H is a torus or a p-torus; in fact, if $G=T^{n}$, then G / H is connected and abelian. Hence G / H is a torus. If $G=C_{p}^{n}$, then G / H is an abelian group consisting of elements of order p or 1 . Hence G / H is a p-torus. In each case, $f^{H}: S V^{H} \rightarrow S W^{H}$ is a G / H-map between G / H-fixed point free representation spheres. Hence Proposition 1.3 shows the necessary condition. The sufficient condition follows from Proposition 1.1 .

We now consider equivariant maps between representation spheres of a cyclic group $C_{p q}$, where p, q are distinct primes. Let $G=C_{p q}$ and c a generator of $C_{p q}$. The unitary irreducible representations $U_{k}(0 \leq k \leq p q-1)$ of $C_{p q}$ are given by

$$
c z=\xi^{k} z \quad \text { for } \quad z \in U_{k}=\mathbb{C}, \xi=\exp \frac{2 \pi \sqrt{-1}}{p q}
$$

Each orthogonal irreducible representation T_{k} is given as the following way: $T_{0}=\mathbb{R}$ with the trivial action; if $0<k<p q / 2$, then $T_{k}=r_{\mathbb{R}} U_{k}$, where $r_{\mathbb{R}}$ denote realification of a unitary representation, and if $q=2$ and p is an odd prime, then $T_{p}=\mathbb{R}_{\text {_ }}$ with the antipodal action of C_{2} and the trivial action of C_{p}.

Set $C_{p}=\left\langle c^{q}\right\rangle$ and $C_{q}=\left\langle c^{p}\right\rangle$. Let V and W be orthogonal representations with $V^{G}=W^{G}=0$. If there exists a G-map $f: S V \rightarrow S W$, then $f^{H}: S V^{H} \rightarrow S W^{H}$ is a G / H-map for $H=C_{p}$ or C_{q}. Since G / H acts freely on $S V^{H}$ and $S W^{H}$, it follows from Proposition 1.2 that $\operatorname{dim} V^{H} \leq \operatorname{dim} W^{H}$ for $H=C_{p}, C_{q}$. In the case of $\operatorname{dim} W^{H}=0$ ($H=C_{p}$ or C_{q}), it follows that $\operatorname{dim} V^{H}=0$. Since $\operatorname{res}_{H} f$ is an H-map between H-free
representation spheres, we have $\operatorname{dim} V \leq \operatorname{dim} W$ by Proposition 1.2. Thus we obtain the following.

Proposition 1.5. Let $G=C_{p q}$. Let V and W be representations with $V^{G}=W^{G}=0$. If there exists a G-map $f: S V \rightarrow S W$, then the following hold.
(1) $\operatorname{dim} V^{C_{p}} \leq \operatorname{dim} W^{C_{p}}$ and $\operatorname{dim} V^{C_{q}} \leq \operatorname{dim} W^{C_{q}}$.
(2) If $\operatorname{dim} W^{C_{p}}=0$ or $\operatorname{dim} W^{C_{q}}=0$, then $\operatorname{dim} V \leq \operatorname{dim} W$.

In the next section, we show that if V and W are unitary, then the converse holds. As a consequence, we obtain the following.

Theorem 1.6. Let V and W be unitary representations with $V^{G}=W^{G}=0$ for $G=C_{p q}$. There exists a G-map $f: S V \rightarrow S W$ if and only if the conditions (1) and (2) of Proposition 1.5 hold.

2. Proof of Theorem 1.6

We have already shown that the conditions (1) and (2) are necessary. Next we show that (1) and (2) are sufficient for the existence of a G-map. The proof is divided into several cases.

We set $G=C_{p q}$ and denote by U_{k} the unitary irreducible representation of $C_{p q}$ described in the previous section. The following is straightforward.

Lemma 2.1. If $f_{i}: S V_{i} \rightarrow S W_{i}, i=1,2$, are G-maps, then the join of f_{1} and f_{2} induces a G-map $f_{1} * f_{2}: S\left(V_{1} \oplus V_{2}\right) \rightarrow S\left(W_{1} \oplus W_{2}\right)$.

The kernel Ker V of a representation V is defined by the kernel of the representation homomorphism of $V: \rho_{V}: G \rightarrow G L(V)$. It is easily seen that

$$
\operatorname{Ker} U_{k}= \begin{cases}1 & (k, p q)=1 \\ C_{p} & (k, p q)=p \\ C_{q} & (k, p q)=q \\ C_{p q} & k=0,\end{cases}
$$

where $(k, p q)$ denotes the greatest common divisor of k and $p q$.
Lemma 2.2. If $\operatorname{Ker} U_{k}=\operatorname{Ker} U_{l}$, then there exists a G-map $f: S U_{k} \rightarrow S U_{l}$,
Proof. If $\operatorname{Ker} U_{k}=\operatorname{Ker} U_{l}=C_{p q}$, then it is trivial. Assume that $\operatorname{Ker} U_{k}=\operatorname{Ker} U_{l} \neq C_{p q}$ Since $(k /(k, p q), p q)=1$, one can take an integer s such that $s k /(k, p q) \equiv 1(\bmod p q)$.

Then a map f defined by

$$
f(z)=z^{s l /(k, p q)}, z \in S U_{k}
$$

is a G-map.
For a representation V with $V^{G}=0$, decompose V into irreducible representations as follows:

$$
V=\bigoplus_{i=1}^{p q-1} a_{i} U_{i}\left(a_{i} \geq 0\right)
$$

Let H be a subgroup of G. Setting $V(H)=\bigoplus_{i: K e r ~}^{U_{i}=H}$ $a_{i} U_{i}$, we have a decomposition

$$
V=V(1) \oplus V\left(C_{p}\right) \oplus V\left(C_{q}\right) .
$$

By Lemmas 2.1 and 2.2, we obtain the following.
Proposition 2.3. There exist G-maps between $S(V(H))$ and $S\left(m U_{(|H|, p q)}\right)$ bidirectionally, where $m=\frac{1}{2} \operatorname{dim} V(H)$.

By this proposition, without loss of generality, we may assume that V and W have the following forms:

$$
\begin{aligned}
& V=a_{1} U_{1} \oplus a_{p} U_{p} \oplus a_{q} U_{q}, \\
& W=b_{1} U_{1} \oplus b_{p} U_{p} \oplus b_{q} U_{q},
\end{aligned}
$$

where a_{i} and b_{i} are non-negative integers. Note that $V^{C_{p}}=a_{p} U_{p}, V^{C_{q}}=a_{q} U_{q}$ and so on. It is easy to see that the conditions (1) and (2) are equivalent to statements:
(1) $a_{p} \leq b_{p}$ and $a_{q} \leq b_{q}$.
(2) If $b_{p}=0$, then $a_{1}+a_{q} \leq b_{1}+b_{q}$ and if $b_{q}=0$, then $a_{1}+a_{p} \leq b_{1}+b_{p}$.

First we recall the following result from [12].
Lemma 2.4. Let $W=b_{1} U_{1} \oplus b_{p} U_{p} \oplus b_{q} U_{q}, b_{p}>0, b_{q}>0$. Then there exists a self G-map $h: S W \rightarrow S W$ such that $\operatorname{deg} h=0$.

Proof. Degrees of $h^{H}, H \leq G$, of a self G-map h on $S W$ satisfy the Burnside ring relation described in [2]. In fact, it is seen that if there exists a G-map $h: S W \rightarrow S W$, then the following relations hold:

$$
\left\{\begin{array}{l}
\operatorname{deg} h \equiv \operatorname{deg} h^{C_{p}} \bmod p \\
\operatorname{deg} h \equiv \operatorname{deg} h^{C_{q}} \bmod q \\
\operatorname{deg} h^{C_{p}} \equiv 1 \bmod q \\
\operatorname{deg} h^{C_{q}} \equiv 1 \bmod p
\end{array}\right.
$$

Conversely, if integers d_{1}, d_{p}, d_{q} satisfy relations $d_{1} \equiv d_{p} \bmod p, d_{1} \equiv d_{q} \bmod q$, $d_{p} \equiv 1 \bmod q$ and $d_{q} \equiv 1 \bmod p$, then there exists a G-map $h: S W \rightarrow S W$ such that $\operatorname{deg} h=d_{1}, \operatorname{deg} h^{C_{p}}=d_{p}, \operatorname{deg} h^{C_{q}}=d_{q}$. We set $d_{1}=0$ and we can take d_{p} such that $d_{p} \equiv 0 \bmod p, d_{p} \equiv 1 \bmod q$ and d_{q} such that $d_{q} \equiv 1 \bmod p, d_{q} \equiv 0 \bmod q$, These integers satisfy the above relations. Therefore there exists a G-map $h: S W \rightarrow S W$ such that $\operatorname{deg} h=0$.
2.1. Case 1. We shall show the theorem when $b_{p}>0$ and $b_{q}>0$.

Lemma 2.5. If (1) $a_{p} \leq b_{p}, a_{q} \leq b_{q}$ and (2) $b_{p}>0, b_{q}>0$, then there exists a G-map $f: S V \rightarrow S W$.

Proof. By (1), there is an inclusion $i: S V^{>1} \rightarrow S W^{>1} \subset S W$. Using Waner's method [12], we show that this inclusion can be extended to a G-map f. Since G acts freely on $S V \backslash S V^{>1}, S V$ is decomposed as a union of $S V^{>1}$ and free G-cells:

$$
S V=S V^{>1} \cup G \times D^{n_{1}} \cup \cdots \cup G \times D^{n_{r}},
$$

where $n_{1} \leq \cdots \leq n_{r}$. Set $X_{k}=S V^{>1} \cup G \times D^{n_{1}} \cup \cdots \cup G \times D^{n_{k}}$, where $k \geq 1$. Suppose inductively that there is a G-map $f_{k-1}: X_{k-1} \rightarrow S W$, where $X_{0}=S V^{>1}$ and $f_{0}=i$. Since $X_{k}=X_{k-1} \cup G \times D^{n_{k}}$, restricting f_{k-1} to $1 \times \partial D^{n_{k}}=\partial D^{n_{k}}$, we have a map $g=\left.f_{k-1}\right|_{\partial D^{n_{k}}}: \partial D^{n_{k}} \rightarrow S W$. Compose g with a G-map h of degree 0 and set $g^{\prime}=h \circ g$. Then g^{\prime} is null-homotopic and g^{\prime} is extended to $g^{\prime \prime}: D^{n_{k}} \rightarrow S W$. Furthermore, $g^{\prime \prime}$ is equivariantly extended to a G-map $\tilde{g}: G \times D^{n_{k}} \rightarrow S W$. Thus we obtain a G-map $f_{k}=f_{k-1} \cup \tilde{g}: X_{k} \rightarrow S W$.
2.2. Case 2. We shall show the theorem in the case of $b_{p}=0$ or $b_{q}=0$. We may suppose $b_{q}=0$. Then by condition (1), we have $a_{q}=0$ and $a_{p} \leq b_{p}$, If $a_{1} \leq b_{1}$, then, there is an inclusion $i: S V \rightarrow S W$, which is G-equivariant.

Suppose that $a_{1}>b_{1}$. By condition (2), we have $a_{1}+a_{p} \leq b_{1}+b_{p}$ and hence $a_{1}-b_{1} \leq b_{p}-a_{p}$. Note that there exists a G-map $g: S U_{1} \rightarrow S U_{p}$; for example, g can be defined by $g(z)=z^{p}$. Hence there exists a G-map $\bar{g}: S\left(\left(a_{1}-b_{1}\right) U_{1}\right) \rightarrow S\left(\left(b_{p}-a_{p}\right) U_{p}\right)$ by Lemma 2.1. Joining \bar{g} with the identity map $i d: S\left(b_{1} U_{1} \oplus a_{p} U_{p}\right) \rightarrow S\left(b_{1} U_{1} \oplus a_{p} U_{p}\right)$, we obtain a G-map $f=\bar{g} * i d: S V \rightarrow S W$. Thus the proof is complete.

3. Comparison to isovariant maps

Let G be a compact Lie group. A continuous G-map $f: X \rightarrow Y$ is called G isovariant if f preserves the isotropy groups; i.e., $G_{f(x)}=G_{x}$ for all $x \in X$. It is
important to clarify the existence problem of isovariant maps and there are several researches about isovariant map as well as equivariant maps; for example, see [7], [8], [9], [10]. A necessary and sufficient condition for the existence of a $C_{p q}$-isovariant map between representations (or equivalently, representation spheres) is already known. In fact, the following result easily follows from results of [7].

Proposition 3.1. Let $G=C_{p q}$. Let $S V$ and $S W$ be G-fixed point free (orthogonal) representation spheres. There exits a G-isovariant map $f: S V \rightarrow S W$ if and only if
(1) $\operatorname{dim} V^{H} \leq \operatorname{dim} W^{H}$ for $H=C_{p}$ and C_{q}, and
(2) $\operatorname{dim} V-\operatorname{dim} V^{H} \leq \operatorname{dim} W-\operatorname{dim} W^{H}$ for $H=C_{p}$ and C_{q}.

Remark. By combining (1) and (2), it is deduced that $\operatorname{dim} V \leq \operatorname{dim} W$. This kind of result is called the isovariant Borsuk-Ulam theorem. See [10], [13] for more general results.

By comparing Proposition 3.1 and Theorem 1.6, we see that there are many pairs $S V, S W$ of $C_{p q}$-fixed point free representation spheres such that there is a $C_{p q}$-map from $S V$ to $S W$, but not a $C_{p q}$-isovariant map.

Example 3.2. Let $V=a U_{1}(a \geq 1)$ and $W=U_{p} \oplus U_{q}$. Then there is a $C_{p q}$-map $f: S V \rightarrow S W$. However, if $a \geq 2$, then there is no $C_{p q}$-isovariant map from $S V$ to SW.

This example provides another kind of Borsuk-Ulam type result; namely, if $a \geq 2$ and $f: S V \rightarrow S W$ is a $C_{p q}$-map, then it follows that $f^{-1}\left(S W^{>1}\right) \neq \emptyset$, where $S W^{>1}$ denotes the singular set of $S W$ defined by $S W^{>1}=\left\{x \in S W \mid G_{x} \neq 1\right\}$. In this case, note that $S W^{>1}=S U_{p} \amalg S U_{q}$ (Hopf link). Furthermore, one can show the following.

Proposition 3.3. Let $V=a U_{1}(a \geq 2)$ and $W=U_{p} \oplus U_{q}$. If there is a $C_{p q}$-map $f: S V \rightarrow S W$, then $f^{-1}\left(S U_{p}\right) \neq \emptyset$ and $f^{-1}\left(S U_{q}\right) \neq \emptyset$.

Proof. If $f^{-1}\left(S U_{p}\right)=\emptyset$, then we have an equivariant map $f: S V \rightarrow S W \backslash S U_{p}$. Since $S W \backslash S U_{p}$ is $C_{p q}$-homotopy equivalent to $S U_{q}$, there exists a $C_{p q}$-map $g: S V \rightarrow$ $S U_{q}$. However, this contradicts Proposition 1.5 (2). Thus we see that $f^{-1}\left(S U_{p}\right) \neq \emptyset$. Similarly we see that $f^{-1}\left(S U_{q}\right) \neq \emptyset$.

References

[1] T. Bartsch, On the existence of Borsuk-Ulam theorems, Topology 31 (1992), 533543.
[2] T. tom Dieck, Transformation groups, Transformation Groups, Walter de Gruyter, Berlin, New York, 1987.
[3] E. Fadell and S. Husseini, An ideal-valued cohomological index theory with applications to Borsuk-Ulam and Bourgin-Yang theorems, Ergodic Theory Dynamical System 8 (1988), 73-85.
[4] T. Kobayashi, The Borsuk-Ulam theorem for a \mathbb{Z}_{q}-map from a \mathbb{Z}_{q}-space to $S^{2 n+1}$, Proc. Amer. Math. Soc. 97 (1986), 714-716.
[5] W. Marzantowicz, Borsuk-Ulam theorem for any compact Lie group, J. Lond. Math. Soc., II. Ser. 49 (1994),195-208.
[6] W. Marzantowicz, D. de Mattos and E. L. dos Santos, Bourgin-Yang version of the Borsuk-Ulam theorem for p-toral groups, preprint.
[7] I. Nagasaki, The converse of isovariant Borsuk-Ulam results for some abelian groups, Osaka. J. Math. 43 (2006), 689-710.
[8] I. Nagasaki, A note on the existence problem of isovariant maps between representation spaces, Studia Humana et Naturalia 43 (2009), 33-42.
[9] I. Nagasaki, Remarks on Borsuk-Ulam type results and the existence of isovariant maps, Studia Humana et Naturalia 44 (2010), 91-100.
[10] I Nagasaki and F. Ushitaki, New examples of the Borsuk-Ulam groups, RIMS Kôkyuroku Bessatsu B39 (2013), 109-119.
[11] I. Nagasaki, T. Kawakami, Y. Hara and F. Ushitaki, The Smith homology and Borsuk-Ulam type theorems, Far East Journal of Mathematical Sciences (FJMS) 38 (2) (2010), 205-216.
[12] S. Waner, A note on the existence of G-maps between spheres, Proc. Amer. Math. Soc. 99 (1987), 179-181.
[13] A. G. Wasserman, Isovariant maps and the Borsuk-Ulam theorem, Topology Appli. 38 (1991), 155-161.

[^0]: ${ }^{1)}$ Department of Mathematics, Kyoto Prefectural University of Medicine, 13 Nishitakatsukasa-cho, Taishogun, Kita-ku, Kyoto 603-8334, Japan. e-mail: nagasaki@koto.kpu-m.ac.jp

