Remarks on Equivariant and Isovariant Maps between Representations

Ikumitsu NAGASAKI 1)

Abstract. In this note, we consider the existence problem of equivariant or isovariant maps between representation spheres. In particular, we give a necessary and sufficient condition for the existence of an equivariant map between unitary representation spheres of a cyclic group C_{pq} , where p, q are distinct primes.

1. The existence problem of C_{pq} -maps

The existence or non-existence problem of equivariant maps is a fundamental and important topic in equivariant topology, and many results are known up to the present. However, giving a necessary and sufficient condition for the existence of an equivariant map is not so easy in general. Recently, Marzantowicz, de Mattos and dos Santos [6] discuss a necessary and sufficient condition of the existence of an equivariant map for a torus and a p-torus. In this note, we deal with the case of C_{pq} -maps, where p, q are distinct primes.

First, we recall well-known results on the existence problem. Let G be a compact Lie group and V an (orthogonal) representation of G. We denote by SV the representation sphere of V, which is defined as the unit sphere of V. The following fact is proved by equivariant obstruction theory; for example, see [2].

Proposition 1.1. Let V and W be (orthogonal) representations of G. If $\dim V^H \leq \dim W^H$ for every (closed) subgroup H of G, then there exists a G-map $f: SV \to SW$.

The converse is not true in general, but in some special cases, the converse holds. Such kind of results are brought from Borsuk-Ulam type theorems. We state two Borsuk-Ulam type theorems; see [3], [4], [5], [11] for more details.

 $^{^{1)}}$ Department of Mathematics, Kyoto Prefectural University of Medicine, 13 Nishitakatsukasa-cho, Taishogun, Kita-ku, Kyoto 603-8334, Japan. e-mail: nagasaki@koto.kpu-m.ac.jp

²⁰¹⁰ Mathematics Subject Classification. Primary 57S17; Secondary 55M20.

Proposition 1.2. Assume that G acts freely on SV and SW. If there exists a G-map $f: SV \to SW$, then dim $V \leq \dim W$ holds.

Proposition 1.3. Let G be a torus T^n or a p-torus C_p^n . Assume that SV and SW are G-fixed point free, i.e., $SV^G = SW^G = \emptyset$. If there exists a G-map $f: SV \to SW$, then $\dim V \leq \dim W$ holds.

Marzantowicz, de Mattos and dos Santos [6] give a necessary and sufficient condition for the existence of an equivariant map in the case of G being a torus or a p-torus. In particular, the following result is deduced from their results.

Corollary 1.4. Let G be a torus T^n or a p-torus C_p^n . Let SV and SW be G-fixed point free representation spheres. Then there exists a G-map $f: SV \to SW$ if and only if $\dim V^H \le \dim W^H$ holds for every closed subgroups H of G.

Proof. Note that G/H is a torus or a p-torus; in fact, if $G = T^n$, then G/H is connected and abelian. Hence G/H is a torus. If $G = C_p^n$, then G/H is an abelian group consisting of elements of order p or 1. Hence G/H is a p-torus. In each case, $f^H : SV^H \to SW^H$ is a G/H-map between G/H-fixed point free representation spheres. Hence Proposition 1.3 shows the necessary condition. The sufficient condition follows from Proposition 1.1.

We now consider equivariant maps between representation spheres of a cyclic group C_{pq} , where p, q are distinct primes. Let $G = C_{pq}$ and c a generator of C_{pq} . The unitary irreducible representations U_k ($0 \le k \le pq - 1$) of C_{pq} are given by

$$cz = \xi^k z$$
 for $z \in U_k = \mathbb{C}$, $\xi = \exp \frac{2\pi \sqrt{-1}}{pq}$.

Each orthogonal irreducible representation T_k is given as the following way: $T_0 = \mathbb{R}$ with the trivial action; if 0 < k < pq/2, then $T_k = r_{\mathbb{R}}U_k$, where $r_{\mathbb{R}}$ denote realification of a unitary representation, and if q = 2 and p is an odd prime, then $T_p = \mathbb{R}_-$ with the antipodal action of C_2 and the trivial action of C_p .

Set $C_p = \langle c^q \rangle$ and $C_q = \langle c^p \rangle$. Let V and W be orthogonal representations with $V^G = W^G = 0$. If there exists a G-map $f \colon SV \to SW$, then $f^H \colon SV^H \to SW^H$ is a G/H-map for $H = C_p$ or C_q . Since G/H acts freely on SV^H and SW^H , it follows from Proposition 1.2 that $\dim V^H \leq \dim W^H$ for $H = C_p$, C_q . In the case of $\dim W^H = 0$ $(H = C_p \text{ or } C_q)$, it follows that $\dim V^H = 0$. Since $\operatorname{res}_H f$ is an H-map between H-free

representation spheres, we have $\dim V \leq \dim W$ by Proposition 1.2. Thus we obtain the following.

Proposition 1.5. Let $G = C_{pq}$. Let V and W be representations with $V^G = W^G = 0$. If there exists a G-map $f: SV \to SW$, then the following hold.

- (1) $\dim V^{C_p} \leq \dim W^{C_p}$ and $\dim V^{C_q} \leq \dim W^{C_q}$.
- (2) If $\dim W^{C_p} = 0$ or $\dim W^{C_q} = 0$, then $\dim V \leq \dim W$.

In the next section, we show that if V and W are unitary, then the converse holds. As a consequence, we obtain the following.

Theorem 1.6. Let V and W be unitary representations with $V^G = W^G = 0$ for $G = C_{pq}$. There exists a G-map $f \colon SV \to SW$ if and only if the conditions (1) and (2) of Proposition 1.5 hold.

2. Proof of Theorem 1.6

We have already shown that the conditions (1) and (2) are necessary. Next we show that (1) and (2) are sufficient for the existence of a G-map. The proof is divided into several cases.

We set $G = C_{pq}$ and denote by U_k the unitary irreducible representation of C_{pq} described in the previous section. The following is straightforward.

Lemma 2.1. If $f_i: SV_i \to SW_i$, i = 1, 2, are G-maps, then the join of f_1 and f_2 induces a G-map $f_1 * f_2: S(V_1 \oplus V_2) \to S(W_1 \oplus W_2)$.

The kernel Ker V of a representation V is defined by the kernel of the representation homomorphism of $V: \rho_V: G \to GL(V)$. It is easily seen that

$$\operatorname{Ker} U_k = \begin{cases} 1 & (k, pq) = 1 \\ C_p & (k, pq) = p \\ C_q & (k, pq) = q \\ C_{pq} & k = 0, \end{cases}$$

where (k, pq) denotes the greatest common divisor of k and pq.

Lemma 2.2. If $\operatorname{Ker} U_k = \operatorname{Ker} U_l$, then there exists a G-map $f: SU_k \to SU_l$,

Proof. If Ker $U_k = \text{Ker } U_l = C_{pq}$, then it is trivial. Assume that Ker $U_k = \text{Ker } U_l \neq C_{pq}$ Since (k/(k,pq),pq) = 1, one can take an integer s such that $sk/(k,pq) \equiv 1 \pmod{pq}$. Then a map f defined by

$$f(z) = z^{sl/(k,pq)}, \ z \in SU_k$$

is a G-map.

For a representation V with $V^G=0$, decompose V into irreducible representations as follows:

$$V = \bigoplus_{i=1}^{pq-1} a_i U_i \ (a_i \ge 0).$$

Let H be a subgroup of G. Setting $V(H) = \bigoplus_{i: \text{Ker } U_i = H} a_i U_i$, we have a decomposition

$$V = V(1) \oplus V(C_p) \oplus V(C_q).$$

By Lemmas 2.1 and 2.2, we obtain the following.

Proposition 2.3. There exist G-maps between S(V(H)) and $S(mU_{(|H|,pq)})$ bidirectionally, where $m = \frac{1}{2} \dim V(H)$.

By this proposition, without loss of generality, we may assume that V and W have the following forms:

$$V = a_1 U_1 \oplus a_p U_p \oplus a_q U_q,$$

$$W = b_1 U_1 \oplus b_p U_p \oplus b_q U_q,$$

where a_i and b_i are non-negative integers. Note that $V^{C_p} = a_p U_p$, $V^{C_q} = a_q U_q$ and so on. It is easy to see that the conditions (1) and (2) are equivalent to statements:

- (1) $a_p \leq b_p$ and $a_q \leq b_q$.
- (2) If $b_p = 0$, then $a_1 + a_q \le b_1 + b_q$ and if $b_q = 0$, then $a_1 + a_p \le b_1 + b_p$.

First we recall the following result from [12].

Lemma 2.4. Let $W = b_1U_1 \oplus b_pU_p \oplus b_qU_q$, $b_p > 0$, $b_q > 0$. Then there exists a self G-map $h: SW \to SW$ such that $\deg h = 0$.

Proof. Degrees of h^H , $H \leq G$, of a self G-map h on SW satisfy the Burnside ring relation described in [2]. In fact, it is seen that if there exists a G-map $h: SW \to SW$, then the following relations hold:

$$\begin{cases} \deg h \equiv \deg h^{C_p} \mod p, \\ \deg h \equiv \deg h^{C_q} \mod q, \\ \deg h^{C_p} \equiv 1 \mod q, \\ \deg h^{C_q} \equiv 1 \mod p. \end{cases}$$

Conversely, if integers d_1 , d_p , d_q satisfy relations $d_1 \equiv d_p \mod p$, $d_1 \equiv d_q \mod q$, $d_p \equiv 1 \mod q$ and $d_q \equiv 1 \mod p$, then there exists a G-map $h \colon SW \to SW$ such that $\deg h = d_1$, $\deg h^{C_p} = d_p$, $\deg h^{C_q} = d_q$. We set $d_1 = 0$ and we can take d_p such that $d_p \equiv 0 \mod p$, $d_p \equiv 1 \mod q$ and d_q such that $d_q \equiv 1 \mod p$, $d_q \equiv 0 \mod q$. These integers satisfy the above relations. Therefore there exists a G-map $h \colon SW \to SW$ such that $\deg h = 0$.

2.1. Case 1. We shall show the theorem when $b_p > 0$ and $b_a > 0$.

Lemma 2.5. If (1) $a_p \le b_p$, $a_q \le b_q$ and (2) $b_p > 0$, $b_q > 0$, then there exists a G-map $f: SV \to SW$.

Proof. By (1), there is an inclusion $i: SV^{>1} \to SW^{>1} \subset SW$. Using Waner's method [12], we show that this inclusion can be extended to a G-map f. Since G acts freely on $SV \setminus SV^{>1}$, SV is decomposed as a union of $SV^{>1}$ and free G-cells:

$$SV = SV^{>1} \cup G \times D^{n_1} \cup \cdots \cup G \times D^{n_r}$$
.

where $n_1 \leq \cdots \leq n_r$. Set $X_k = SV^{>1} \cup G \times D^{n_1} \cup \cdots \cup G \times D^{n_k}$, where $k \geq 1$. Suppose inductively that there is a G-map $f_{k-1} \colon X_{k-1} \to SW$, where $X_0 = SV^{>1}$ and $f_0 = i$. Since $X_k = X_{k-1} \cup G \times D^{n_k}$, restricting f_{k-1} to $1 \times \partial D^{n_k} = \partial D^{n_k}$, we have a map $g = f_{k-1}|_{\partial D^{n_k}} \colon \partial D^{n_k} \to SW$. Compose g with a G-map h of degree 0 and set $g' = h \circ g$. Then g' is null-homotopic and g' is extended to $g'' \colon D^{n_k} \to SW$. Furthermore, g'' is equivariantly extended to a G-map $\tilde{g} \colon G \times D^{n_k} \to SW$. Thus we obtain a G-map $f_k = f_{k-1} \cup \tilde{g} \colon X_k \to SW$.

2.2. Case 2. We shall show the theorem in the case of $b_p = 0$ or $b_q = 0$. We may suppose $b_q = 0$. Then by condition (1), we have $a_q = 0$ and $a_p \le b_p$, If $a_1 \le b_1$, then, there is an inclusion $i: SV \to SW$, which is G-equivariant.

Suppose that $a_1 > b_1$. By condition (2), we have $a_1 + a_p \leq b_1 + b_p$ and hence $a_1 - b_1 \leq b_p - a_p$. Note that there exists a G-map $g: SU_1 \to SU_p$; for example, g can be defined by $g(z) = z^p$. Hence there exists a G-map $\bar{g}: S((a_1 - b_1)U_1) \to S((b_p - a_p)U_p)$ by Lemma 2.1. Joining \bar{g} with the identity map $id: S(b_1U_1 \oplus a_pU_p) \to S(b_1U_1 \oplus a_pU_p)$, we obtain a G-map $f = \bar{g}*id: SV \to SW$. Thus the proof is complete.

3. Comparison to isovariant maps

Let G be a compact Lie group. A continuous G-map $f: X \to Y$ is called G-isovariant if f preserves the isotropy groups; i.e., $G_{f(x)} = G_x$ for all $x \in X$. It is

important to clarify the existence problem of isovariant maps and there are several researches about isovariant map as well as equivariant maps; for example, see [7], [8], [9], [10]. A necessary and sufficient condition for the existence of a C_{pq} -isovariant map between representations (or equivalently, representation spheres) is already known. In fact, the following result easily follows from results of [7].

Proposition 3.1. Let $G = C_{pq}$. Let SV and SW be G-fixed point free (orthogonal) representation spheres. There exits a G-isovariant map $f: SV \to SW$ if and only if

- (1) $\dim V^H \leq \dim W^H$ for $H = C_p$ and C_q , and
- (2) $\dim V \dim V^H \leq \dim W \dim W^H$ for $H = C_p$ and C_q .

Remark. By combining (1) and (2), it is deduced that $\dim V \leq \dim W$. This kind of result is called the isovariant Borsuk-Ulam theorem. See [10], [13] for more general results.

By comparing Proposition 3.1 and Theorem 1.6, we see that there are many pairs SV, SW of C_{pq} -fixed point free representation spheres such that there is a C_{pq} -map from SV to SW, but not a C_{pq} -isovariant map.

Example 3.2. Let $V = aU_1$ $(a \ge 1)$ and $W = U_p \oplus U_q$. Then there is a C_{pq} -map $f \colon SV \to SW$. However, if $a \ge 2$, then there is no C_{pq} -isovariant map from SV to SW.

This example provides another kind of Borsuk-Ulam type result; namely, if $a \geq 2$ and $f \colon SV \to SW$ is a C_{pq} -map, then it follows that $f^{-1}(SW^{>1}) \neq \emptyset$, where $SW^{>1}$ denotes the singular set of SW defined by $SW^{>1} = \{x \in SW \mid G_x \neq 1\}$. In this case, note that $SW^{>1} = SU_p \coprod SU_q$ (Hopf link). Furthermore, one can show the following.

Proposition 3.3. Let $V = aU_1$ $(a \ge 2)$ and $W = U_p \oplus U_q$. If there is a C_{pq} -map $f: SV \to SW$, then $f^{-1}(SU_p) \ne \emptyset$ and $f^{-1}(SU_q) \ne \emptyset$.

Proof. If $f^{-1}(SU_p) = \emptyset$, then we have an equivariant map $f: SV \to SW \setminus SU_p$. Since $SW \setminus SU_p$ is C_{pq} -homotopy equivalent to SU_q , there exists a C_{pq} -map $g: SV \to SU_q$. However, this contradicts Proposition 1.5 (2). Thus we see that $f^{-1}(SU_p) \neq \emptyset$.

References

[1] T. Bartsch, On the existence of Borsuk-Ulam theorems, Topology 31 (1992), 533–543.

- [2] T. tom Dieck, Transformation groups, Transformation Groups, Walter de Gruyter, Berlin, New York, 1987.
- [3] E. Fadell and S. Husseini, An ideal-valued cohomological index theory with applications to Borsuk-Ulam and Bourgin-Yang theorems, Ergodic Theory Dynamical System 8 (1988), 73–85.
- [4] T. Kobayashi, The Borsuk-Ulam theorem for a \mathbb{Z}_q -map from a \mathbb{Z}_q -space to S^{2n+1} , Proc. Amer. Math. Soc. 97 (1986), 714–716.
- [5] W. Marzantowicz, Borsuk-Ulam theorem for any compact Lie group, J. Lond. Math. Soc., II. Ser. 49 (1994),195–208.
- [6] W. Marzantowicz, D. de Mattos and E. L. dos Santos, Bourgin-Yang version of the Borsuk-Ulam theorem for p-toral groups, preprint.
- [7] I. Nagasaki, The converse of isovariant Borsuk-Ulam results for some abelian groups, Osaka. J. Math. 43 (2006), 689-710.
- [8] I. Nagasaki, A note on the existence problem of isovariant maps between representation spaces, Studia Humana et Naturalia 43 (2009), 33–42.
- [9] I. Nagasaki, Remarks on Borsuk-Ulam type results and the existence of isovariant maps, Studia Humana et Naturalia 44 (2010), 91–100.
- [10] I Nagasaki and F. Ushitaki, New examples of the Borsuk-Ulam groups, RIMS Kôkyurôku Bessatsu B39 (2013), 109–119.
- [11] I. Nagasaki, T. Kawakami, Y. Hara and F. Ushitaki, The Smith homology and Borsuk-Ulam type theorems, Far East Journal of Mathematical Sciences (FJMS) 38 (2) (2010), 205-216.
- [12] S. Waner, A note on the existence of G-maps between spheres, Proc. Amer. Math. Soc. 99 (1987), 179-181.
- [13] A. G. Wasserman, *Isovariant maps and the Borsuk-Ulam theorem*, Topology Appli. **38** (1991), 155–161.