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Abstract. In this note, we provide a refinement on the weak isovariant Borsuk-
Ulam theorem. The main result is the following: For an arbitrary compact Lie
group G, there exists a positive constant cg > 0 such that, for any G-representa-
tions V' and W, if there exists a G-isovariant map f: V — W, then the inequality
cq(dimV —dimVE) < dim W — dim W& holds.

1. The weak isovariant Borsuk-Ulam theorem

Let G be a compact Lie group. A G-equivariant map f: X — Y is called G-
isovariant if f preserves the isotropy subgroups: G,y = G, * € X. In this note, all
maps between spaces are continuous.

In [3], we have shown the following Borsuk-Ulam type result.

Theorem 1.1. For an arbitrary compact Lie group G, there ezists a weakly monotonely

increasing function
¢ No = Ny (No =NU{0})
diverging to co with the following property:
(P) For any G-representations V and W, if there is a G-isovariant map f: V. — W,
then
e (dimV — dim V) < dim W — dim W¢
holds.

However, a concrete form of ¢¢ is not given in [3]. In this note, we show that g
can be taken as a linear function pg(n) = ¢n for some positive constant c. Namely, we
show the following.
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Theorem 1.2. For an arbitrary compact Lie group G, there exists a positive constant
¢ > 0 such that, for any G-representations V. and W, if there exists a G-isovariant
map f: V. — W, then

c(dimV —dim V%) < dim W — dim W¢
holds.
For a nontrivial compact Lie group G, we define Cg as the set of ¢ € R such that
(1.1) c(dimV —dim VY) < dim W — dim W¢
holds for all G-representations V and W with a G-isovariant map f: V — W.

Definition. We set ¢q = supCq. For convenience, we set ¢ = 1 when G is trivial.

Lemma 1.3. The following hold.
(1) 0eCq.
(2) If ¢ < c and c € Cg, then ¢ € Cq.
(3) 0<cg <1

Proof. (1) When ¢ = 0, the inequality (1.1) clearly holds.
(2) This follows by ¢/(dimV —dim V%) < ¢(dimV — dim V¢) < dim W — dim W¢.
(3) By (1), 0 < ¢. Taking the identity map id: V — V for a nontrivial representa-
tion, we see that ¢ < 1 by (1.1). Hence ¢ < 1. O

Lemma 1.4. The supremum cg is in the set Cg; i.e., cg is the mazimum of ¢ satisfying

inequality (1.1).
Proof. If ¢ = 0, then ¢g € Cg by Lemma 1.3 (1). Suppose that ¢g > 0. For any
€>0, cg—¢e €Cq by Lemma 1.3 (2). Then we have
(cg —e)(dimV — dim V) < dimW — dim W  for any € > 0.

This implies that cg(dimV — dim V¢) < dim W — dim WY. O

Clearly, if ¢g = 1 if and only if the isovariant Borsuk-Ulam theorem holds for G-
representations; namely,

dimV — dim V% < dim W — dim W¢

holds for all G-representations V and W with a G-isovariant map f: V — W. The

isovariant Borsuk-Ulam theorem was studied by Wasserman [6] and Nagasaki-Ushitaki
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[5]. As a sufficient condition for ¢ = 1, Wasserman gave the prime condition and
Nagasaki and Ushitaki gave the Mdbius condition. (For the details, see [5] and [6].)

For example, from these conditions, one can see the following.

Proposition 1.5. For the following groups, ca = 1.

(1) Solvable compact Lie group.
(2) Alternating group A, for5 <mn <11.
(3) PSL(2,q), g is a prime power.

Remark. Some researchers conjecture that ¢g = 1 for any finite group; however, it is

still an open question.

2. Property of weak Borsuk-Ulam groups

We say that G is a weak Borsuk-Ulam group (weak BUG) if ¢ > 0, and that G is
a Borsuk-Ulam group (BUG) if ¢¢ = 1. Theorem 1.2 implies that every compact Lie
group G is a weak Borsuk-Ulam group, and Proposition 1.5 provides many examples

of Borsuk-Ulam groups. We prepare several lemmas for showing Theorem 1.2.

Lemma 2.1. Let H is a closed normal subgroup of G. If H and G/H is [weak]
Borsuk-Ulam groups, then G is also a [weak] Borsuk-Ulam group.

Proof. In the case where G and G/H are Borsuk-Ulam groups, Wasserman [6] has
already shown it. Assume that G and G/H are weak Borsuk-Ulam groups. Let
f:V — W be any G-isovariant map between representations. By restricting the action,
resg f: V — W is H-isovariant and by fixing by H, ff: VH# — WH is G/ H-isovariant.
By definition, we have

cp(dimV — dimVH) < dim W — dim WH
and

cg/u(dimVH — dimV9) < dimW# — dim W€,
By adding the inequalities, we obtain
ca(dimV — dim VH) + g g (dim V7 — dim V) < dim W — dim WE.
Setting
¢ =min{cy,cq/u} >0,

we obtain

c(dimV —dim V%) < dim W — dim W€,
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This shows that cg > 0. O

Lemma 2.2. Let H be a closed normal subgroup of G. Then if G is a [weak] Borsuk-
Ulam group, then G/H is also a [weak] Borsuk-Ulam group.

Proof. In the case where G is a Borsuk-Ulam group, Wasserman [6] has already shown
it. Assume that G is a weak Borsuk-Ulam group. Let f: V' — W be a G/H-isovariant
map between G/H-representations. By using the projection p: G — G/H, V and W
are thought of as G-representations and f is thought of as a G-isovariant map. Then,
we have

co(dimV — V) < dimW — dim W€,
Since dim V¢ = dim V¢/# and dim W = dim W% # | we have

ca(dimV — VE/H) < dim W — dim WE/H,

This means that 0 < cg < cq/n- O

Lemma 2.3. Let H be a closed subgroup of G with cgg = 1. Assume that there exists
a constant 0 < d < 1 such that dim V¥ < ddimV for all nontrivial irreducible G-
representations V.. Then cq > 1 —d > 0. In particular, G is a weak Borsuk-Ulam

group.

Proof. Let f: V — W be a G-isovariant map between G-representations. Decompose
V=VaeoV%and W =W @ WS where V* [resp. W] denotes the orthogonal
complement of V& [resp. W]. Composing the natural inclusion i: V+ — V and the
projection p: W — W with f, we obtain a G-isovariant map g := po foi: V+ — W,
Since H is a Borsuk-Ulam group, it follows that

dimVE — dim VY < dim Wt — dim W < dim Wt

By the complete reducibility of G, V+ decomposes into a direct sum of nontrivial

irreducible representations. Hence by assumption one can see that
(1-d)dimV* < dimV* — dim v+,
Setting ¢ = 1 — d, we obtain that cdim V+ < dim W+, or equivalently
c(dimV —dim VY) < dim W — dim W€,
This implies that c¢ > c=1—-d > 0. g

Proposition 2.4. A connected compact Lie group G is a weak Borsuk-Ulam group.
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Proof. Let T be a maximal torus of G. The following fact is proved in [3]. There
exists a constant 0 < d < 1 such that such that dim VT < ddimV for all nontrivial
irreducible G-representations V. Therefore, by Lemma 2.3, a connected compact Lie

group G is a weak Borsuk-Ulam group. O

3. Proof of Theorem 1.2 and some examples

Let G be a (general) compact Lie group. Then there is a short exact sequence
1-Gy—-G—F—1,

where G is the identity component of G and F = G/Gy is a finite group. It follows
from Proposition 2.4 that G is a weak Borsuk-Ulam group. By Lemma 2.1, it suffices
to show that a finite group is a weak Borsuk-Ulam group. By finite group theory, for

every finite group G, there is a composition series
1=Hy<H<«---<H, =G,

where each H;/H;_; is simple. Therefore, by using Lemma 2.1 repeatedly, it suffices to
show that every finite simple group is a weak Borsuk-Ulam group. In [3], the following

fact is proved.

Lemma 3.1. Let G be a finite simple group. Let H be any nontrivial subgroup of G.
Then there exists a constant 0 < d < 1 such that dim V¥ < ddimV for all nontrivial

irreducible representations V.

In particular, if we take H as a nontrivial cyclic subgroup C, then since cc = 1, it
follows from Lemma 2.3 that every finite simple group is a weak Borsuk-Ulam group.
As a consequence, an arbitrary finite group G is a weak Borsuk-Ulam group. Thus we
obtain that every compact Lie group is a weak Borsuk-Ulam group.

Finally we give an example.
Proposition 3.2. Let G be SO(3) or SU(2). Then cg > 4/5.

Proof. The fact cgo(3y > 4/5 has already shown in [4]. Indeed, if we take O(2) C SO(3),
then dimV°® < ldimV for every nontrivial irreducible representation of SO(3).
Since O(2) is solvable, co(2) = 1. By Lemma 2.3, we have cgos) > 4/5.

Next we consider the case of SU(2). Let

t 0
r={ai= (g ) leeciui-1}
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be a maximal torus of SU(2). Let N be the normalizer of T in SU(2), which is isomor-

phic to Pin(2). Indeed, one can see

N =T]]ro, b:(? 6)

By representation theory (see [2] for example), SU(2) has one k-dimensional complex
irreducible representation Vi for each k > 1. Let xj; be the character of Vj. By the

Weyl character formula,

(0) = thl b3 b 24 14t 24t 5 D i e is odd
XERIUZ N b=t b3 gt 3 g ) if k is even

for g € T. Note that

dime V! = / Xk (ge)dt
T

)1 if k is odd
)0 if k is even.

On the other hand, the order of g;b is 4 and (g:b)? = —I = g_1 € T. Since g;b is
conjugate to g;, we have
1 ifk=1(4)
Xk(9eb) = xn(gi) = ¢ -1 ifk=—-1(4)

0 otherwise

and so

dime VY = % (/T Xk(gt)dtﬂL/Tka(gtb)dt>
B {1 if k=1 (4)

)10 otherwise.

Thus we have dimg VkN < %dimc V;, for any k and so dimc VN < %dimc V for any
complex representation V with VSY(2) = 0. For a real representation U, U & U has a
complex structure. Then clearly dimc U@ U = dim U. Therefore we see that dim UY <
%dimU for any real representation U with USY(2) = 0. Since N is solvable, ¢y = 1.
By Lemma 2.3, we have cgy(2) > 4/5. O

Remark. Determining the precise value of cgy(2) or cgo(s) is still an open question.
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