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Abstract. In this note, we provide a refinement on the weak isovariant Borsuk-

Ulam theorem. The main result is the following: For an arbitrary compact Lie
group G, there exists a positive constant cG > 0 such that, for any G-representa-

tions V and W , if there exists a G-isovariant map f : V → W , then the inequality
cG(dim V − dim V G) ≤ dim W − dim W G holds.

1. The weak isovariant Borsuk-Ulam theorem

Let G be a compact Lie group. A G-equivariant map f : X → Y is called G-
isovariant if f preserves the isotropy subgroups: Gf(x) = Gx, x ∈ X. In this note, all
maps between spaces are continuous.

In [3], we have shown the following Borsuk-Ulam type result.

Theorem 1.1. For an arbitrary compact Lie group G, there exists a weakly monotonely
increasing function

ϕG : N0 → N0 (N0 = N ∪ {0})
diverging to ∞ with the following property:

(P ) For any G-representations V and W , if there is a G-isovariant map f : V → W ,
then

ϕG(dimV − dimV G) ≤ dimW − dimWG

holds.

However, a concrete form of ϕG is not given in [3]. In this note, we show that ϕG

can be taken as a linear function ϕG(n) = cn for some positive constant c. Namely, we
show the following.
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Theorem 1.2. For an arbitrary compact Lie group G, there exists a positive constant
c > 0 such that, for any G-representations V and W , if there exists a G-isovariant
map f : V → W , then

c (dimV − dimV G) ≤ dimW − dimWG

holds.

For a nontrivial compact Lie group G, we define CG as the set of c ∈ R such that

(1.1) c (dimV − dimV G) ≤ dimW − dimWG

holds for all G-representations V and W with a G-isovariant map f : V → W .

Definition. We set cG = sup CG. For convenience, we set cG = 1 when G is trivial.

Lemma 1.3. The following hold.

(1) 0 ∈ CG.
(2) If c′ ≤ c and c ∈ CG, then c′ ∈ CG.
(3) 0 ≤ cG ≤ 1.

Proof. (1) When c = 0, the inequality (1.1) clearly holds.
(2) This follows by c′(dimV − dimV G) ≤ c (dimV − dimV G) ≤ dimW − dimWG.
(3) By (1), 0 ≤ cG. Taking the identity map id : V → V for a nontrivial representa-

tion, we see that c ≤ 1 by (1.1). Hence cG ≤ 1. �

Lemma 1.4. The supremum cG is in the set CG; i.e., cG is the maximum of c satisfying
inequality (1.1).

Proof. If cG = 0, then cG ∈ CG by Lemma 1.3 (1). Suppose that cG > 0. For any
ε > 0, cG − ε ∈ CG by Lemma 1.3 (2). Then we have

(cG − ε)(dimV − dimV G) ≤ dimW − dimWG for any ε > 0.

This implies that cG(dimV − dimV G) ≤ dimW − dimWG. �

Clearly, if cG = 1 if and only if the isovariant Borsuk-Ulam theorem holds for G-
representations; namely,

dimV − dimV G ≤ dimW − dimWG

holds for all G-representations V and W with a G-isovariant map f : V → W . The
isovariant Borsuk-Ulam theorem was studied by Wasserman [6] and Nagasaki-Ushitaki
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[5]. As a sufficient condition for cG = 1, Wasserman gave the prime condition and
Nagasaki and Ushitaki gave the Möbius condition. (For the details, see [5] and [6].)
For example, from these conditions, one can see the following.

Proposition 1.5. For the following groups, cG = 1.

(1) Solvable compact Lie group.
(2) Alternating group An for 5 ≤ n ≤ 11.
(3) PSL(2, q), q is a prime power.

Remark. Some researchers conjecture that cG = 1 for any finite group; however, it is
still an open question.

2. Property of weak Borsuk-Ulam groups

We say that G is a weak Borsuk-Ulam group (weak BUG) if cG > 0, and that G is
a Borsuk-Ulam group (BUG) if cG = 1. Theorem 1.2 implies that every compact Lie
group G is a weak Borsuk-Ulam group, and Proposition 1.5 provides many examples
of Borsuk-Ulam groups. We prepare several lemmas for showing Theorem 1.2.

Lemma 2.1. Let H is a closed normal subgroup of G. If H and G/H is [weak]
Borsuk-Ulam groups, then G is also a [weak] Borsuk-Ulam group.

Proof. In the case where G and G/H are Borsuk-Ulam groups, Wasserman [6] has
already shown it. Assume that G and G/H are weak Borsuk-Ulam groups. Let
f : V → W be any G-isovariant map between representations. By restricting the action,
resHf : V → W is H-isovariant and by fixing by H, fH : V H → WH is G/H-isovariant.
By definition, we have

cH(dimV − dimV H) ≤ dimW − dimWH

and
cG/H(dimV H − dimV G) ≤ dimWH − dimWG.

By adding the inequalities, we obtain

cH(dimV − dimV H) + cG/H(dimV H − dimV G) ≤ dimW − dimWG.

Setting
c = min{cH , cG/H} > 0,

we obtain
c (dimV − dimV G) ≤ dimW − dimWG.
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This shows that cG > 0. �

Lemma 2.2. Let H be a closed normal subgroup of G. Then if G is a [weak] Borsuk-
Ulam group, then G/H is also a [weak] Borsuk-Ulam group. 　

Proof. In the case where G is a Borsuk-Ulam group, Wasserman [6] has already shown
it. Assume that G is a weak Borsuk-Ulam group. Let f : V → W be a G/H-isovariant
map between G/H-representations. By using the projection p : G → G/H, V and W

are thought of as G-representations and f is thought of as a G-isovariant map. Then,
we have

cG(dimV − V G) ≤ dimW − dimWG.

Since dimV G = dimV G/H and dimWG = dimWG/H , we have

cG(dimV − V G/H) ≤ dimW − dimWG/H .

This means that 0 < cG ≤ cG/H . �

Lemma 2.3. Let H be a closed subgroup of G with cH = 1. Assume that there exists
a constant 0 < d < 1 such that dimV H ≤ d dimV for all nontrivial irreducible G-
representations V . Then cG ≥ 1 − d > 0. In particular, G is a weak Borsuk-Ulam
group.

Proof. Let f : V → W be a G-isovariant map between G-representations. Decompose
V = V ⊥ ⊕ V G and W = W⊥ ⊕WG, where V ⊥ [resp. W⊥] denotes the orthogonal
complement of V G [resp. WG]. Composing the natural inclusion i : V ⊥ → V and the
projection p : W → W⊥ with f , we obtain a G-isovariant map g := p◦f ◦i : V ⊥ → W⊥.
Since H is a Borsuk-Ulam group, it follows that

dimV ⊥ − dimV ⊥H ≤ dimW⊥ − dimW⊥H ≤ dimW⊥.

By the complete reducibility of G, V ⊥ decomposes into a direct sum of nontrivial
irreducible representations. Hence by assumption one can see that

(1− d) dimV ⊥ ≤ dimV ⊥ − dimV ⊥H
.

Setting c = 1− d, we obtain that cdimV ⊥ ≤ dimW⊥, or equivalently

c (dimV − dimV G) ≤ dimW − dimWG.

This implies that cG ≥ c = 1− d > 0. �

Proposition 2.4. A connected compact Lie group G is a weak Borsuk-Ulam group.
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Proof. Let T be a maximal torus of G. The following fact is proved in [3]. There
exists a constant 0 < d < 1 such that such that dimV T ≤ d dimV for all nontrivial
irreducible G-representations V . Therefore, by Lemma 2.3, a connected compact Lie
group G is a weak Borsuk-Ulam group. �

3. Proof of Theorem 1.2 and some examples

Let G be a (general) compact Lie group. Then there is a short exact sequence

1 → G0 → G → F → 1,

where G0 is the identity component of G and F ∼= G/G0 is a finite group. It follows
from Proposition 2.4 that G0 is a weak Borsuk-Ulam group. By Lemma 2.1, it suffices
to show that a finite group is a weak Borsuk-Ulam group. By finite group theory, for
every finite group G, there is a composition series

1 = H0 � H1 � · · · � Hr = G,

where each Hi/Hi−1 is simple. Therefore, by using Lemma 2.1 repeatedly, it suffices to
show that every finite simple group is a weak Borsuk-Ulam group. In [3], the following
fact is proved.

Lemma 3.1. Let G be a finite simple group. Let H be any nontrivial subgroup of G.
Then there exists a constant 0 < d < 1 such that dimV H ≤ ddimV for all nontrivial
irreducible representations V .

In particular, if we take H as a nontrivial cyclic subgroup C, then since cC = 1, it
follows from Lemma 2.3 that every finite simple group is a weak Borsuk-Ulam group.
As a consequence, an arbitrary finite group G is a weak Borsuk-Ulam group. Thus we
obtain that every compact Lie group is a weak Borsuk-Ulam group.

Finally we give an example.

Proposition 3.2. Let G be SO(3) or SU(2). Then cG ≥ 4/5.

Proof. The fact cSO(3) ≥ 4/5 has already shown in [4]. Indeed, if we take O(2) ⊂ SO(3),
then dimV O(2) ≤ 1

5 dimV for every nontrivial irreducible representation of SO(3).
Since O(2) is solvable, cO(2) = 1. By Lemma 2.3, we have cSO(3) ≥ 4/5.

Next we consider the case of SU(2). Let

T =
{

gt :=
(

t 0
0 t−1

)
| t ∈ C, |t| = 1

}
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be a maximal torus of SU(2). Let N be the normalizer of T in SU(2), which is isomor-
phic to Pin(2). Indeed, one can see

N = T
∐

Tb, b =
(

0 i
i 0

)
.

By representation theory (see [2] for example), SU(2) has one k-dimensional complex
irreducible representation Vk for each k ≥ 1. Let χk be the character of Vk. By the
Weyl character formula,

χk(gt) =

{
tk−1 + tk−3 + · · ·+ t2 + 1 + t−2 + t−5 + · · ·+ t−(k−1) if k is odd
tk−1 + tk−3 + · · ·+ t + t−1 + t−3 + · · ·+ t−(k−1) if k is even

for gt ∈ T . Note that

dimC V T
k =

∫
T

χk(gt)dt

=

{
1 if k is odd
0 if k is even.

On the other hand, the order of gtb is 4 and (gtb)2 = −I = g−1 ∈ T . Since gtb is
conjugate to gi, we have

χk(gtb) = χk(gi) =

⎧⎪⎨
⎪⎩

1 if k ≡ 1 (4)
−1 if k ≡ −1 (4)
0 otherwise

and so

dimC V N
k =

1
2

(∫
T

χk(gt)dt +
∫

Tb

χk(gtb)dt

)

=

{
1 if k ≡ 1 (4)
0 otherwise.

Thus we have dimC V N
k ≤ 1

5 dimC Vk for any k and so dimC V N ≤ 1
5 dimC V for any

complex representation V with V SU(2) = 0. For a real representation U , U ⊕ U has a
complex structure. Then clearly dimC U⊕U = dimU . Therefore we see that dim UN ≤
1
5 dimU for any real representation U with USU(2) = 0. Since N is solvable, cN = 1.
By Lemma 2.3, we have cSU(2) ≥ 4/5. �

Remark. Determining the precise value of cSU(2) or cSO(3) is still an open question.
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1343 (2003), 54–60.

[5] I Nagasaki and F. Ushitaki, New examples of the Borsuk-Ulam groups, RIMS
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