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Representations with the Borsuk-Ulam property

Tkumitsu NAGASAKI Y

Abstract. In the previous study, we defined the equivariant level and colevel of
representations. In this paper, we introduce the notion of Borsuk-Ulam property
of representations using these invariants. Furthermore, we show some fundamental
properties and provide illustrative examples of representations with the Borsuk-
Ulam property.

1. Introduction

Let V' be an (orthogonal) G-representation, where G is a compact Lie group. In
[4, 5], we have determined the compact Lie groups with the Borsuk-Ulam property. In
particular, the Borsuk-Ulam theorem does not hold unless G is an elementary abelian
p-group or a torus. However, in a certain class of representations, the Borsuk-Ulam
theorem still holds. For example, if V' and W are free G-representations, i.e., G acts
freely on S(V') and S(W), then the Borsuk-Ulam theorem holds.

In [6], we introduced the equivariant level lg(X) and colevel clg(X) of a fixed-
point-free G-space X. For a fixed-point-free G-representation sphere S(V'), we set
la(V) =1c(S(V)) and re(V) = ca(S(V)).

Definition. (1) We say that V' has the left Borsuk-Ulam property (LBUP) if
lg(V)=dimV.
(2) We say that V has the right Borsuk-Ulam property (RBUP) if rq(V) =dim V.
(3) We say that V' has the Borsuk-Ulam property (BUP) if ig(V) = rq(V) =
dimV, i.e., V has LBUP and RBUP.

We say that V is fixed-point-free if S(V) is fixed-point-free, i.e., V¢ = 0, and
also that V is free if G acts freely on S(V). The Borsuk-Ulam theorem for G-maps
is equivalent to that any fixed-point-free G-representation has BUP. Therefore, if G
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is an elementary abelian p-group C]'; or a k-torus 7%, then any fixed-point-free G-
representation has BUP.
In this paper, we show some fundamental properties of I¢(V') and r¢ (V') and provide

some examples of G-representations with the left or right Borsuk-Ulam property.

2. Fundamental facts of the Borsuk-Ulam property

Unless otherwise stated below, we assume that G-representations are orthogonal and
fixed-point-free, and a subgroup of G means a closed subgroup. Furthermore all maps
between spaces are assumed to be continuous.

We first recall the definition of I¢(S(V)) and clg(S(V)) from [6]. Let Lg(S(V)) be
the set of G-representations W such that there exists a G-map f: S(V) — S(W), and
CLc(S(V)) the set of G-representations U such that there exists a G-map g : S(U) —
S(V).

Definition.
(1) lg(V) =1g(S(V)) :=inf{dim W |W € Lg(S(V))}.
(2) ra(V) =clg(S(V)) :=sup{dimU |U € CLg(S(V))}.

As a convention, we set lg(V) = rg(V) = 0 when V = 0. Clearly
0<lg(V)<dimV <rg(V) < oco.

Definition. We say that a G-map f : S(V) — S(U) realizes (V) if Ig(V) = dim U.
In this case we also say that the G-representation U realizes (V). Similarly, we say
that a G-map f: S(U) — S(V) or U realizes rq(V) if r¢(V) =dimU.

We first note the following.
Proposition 2.1. If U realizes lg(V') [resp. rq(V)], then U has LBUP [resp. RBUP].

Proof. Let f: S(V) — S(U) be a G-map realizing l¢(V). If U does not have LBUP,
then there is a G-map ¢ : S(U) — S(W) with dimU > dimW. Then go f : S(V) —
S(W) implies (V) > dim W. This is a contradiction. The case of RBUP is similar.

(]

Proposition 2.2. IfV has LBUP [resp. RBUP], then any sub-representation U of V
has LBUP [resp. RBUP].
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Proof. Let V. =U @ U;. If U does not have LBUP, there exists a G-map f : S(U) —
S(W),dimU > dim W. Then we have a G-map fxid : S(V) = S(UdU;) — S(WaU,).
This contradicts that V' has LBUP. The case of RBUP is similar. O

Corollary 2.3. IfU has LBUP [resp. RBUP], then U" has LBUP [resp. RBUP)] for
any normal subgroup H of G. O

Proof. Since UH is a sub-representation of U, the result follows. O

Proposition 2.4. Let Q = G/H be a quotient group of G. Then lg(Inng) =lo(V).
In particular, a Q-representation V' has LBUP if and only if the inflation Inng has
LBUP.

Proof. This is shown by Proposition 2.2 of [6]. O

Remark. The equality rg(lnng) = rg(V) does not hold in general. Hence InfSV
need not have RBUP even if V has RBUP.

Definition. Let V and W be G-representations. We say that V' and W are dimen-
sionally equivalent if dim VH = dim W¥# for any subgroup of G.

The following propositions hold.

Proposition 2.5. (1) If f : S(V) — S(W) is a G-map, then lg(V) < lc(W) and
ra(V) <rg(W).
(2) If V and W are dimensionally equivalent, then lg(V) = lg(W) and rg(V) =
ra(W). In particular, V has LBUP [resp. RBUP] if and only if W has LBUP
[resp. RBUP].

Proof. (1) This is clear by the definition.
(2) By equivariant obstruction theory [2], there are G-maps a: S(V) — S(W) and
B:S(W)— S(V). Therefore lg(V) = lg(W) and r¢(V) = r¢(W) by (1). O

Proposition 2.6. Let V be a fized-point-free G-representation and H a subgroup of
G. IfresgV is free H-representation, then V has RBUP as a G-representation.

Proof. If f : S(U) — S(V) is a G-map, then resy f is an H-map between free H-
representation spheres. By Borsuk-Ulam theorem, dim U < dim V. Thus V has RBUP

as a G-representation. O

Remark. A free G-representation need not have LBUP. In fact, such a counterexample

is provided by Theorem 4.2 (2) in section 4.
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3. Low dimensional cases

In this section, we discuss the Borsuk-Ulam property of G-representations of low
dimensions.

When dimV = 0, V has BUP by convention. When dimV = 1, S(V') consists of
two points with non-trivial action. Therefore there are no G-maps from S(U) with
dimU > 2 since S(U) is connected. Thus we have

Proposition 3.1. If dimV =1, then V has BUP. O
Next, we consider the case of dim V' = 2. We begin with the following lemma.

Lemma 3.2. Let C,, be a (non-trivial) cyclic group of order n and U, V (fized-point-
free) 2-dimensional C,-representations. Then the degree of any Cp-map f : S(U) —

S(V) is non-zero.

Proof. A 2-dimensional C,,-representation T}, (= C), k € Z/n, is given by a - z = £Fx,
z € Ty, where &, = exp(2my/—1/n). When k # 0 and k # n/2 if n is even, T} is
irreducible and T), = T_j. Note that Ty = 2R and T),/5 = 2R., where R. is given by
a-r=-z,x€R..

If necessary, considering UX"V one may suppose that U is faithful. Then U is a
free Cy,-representation. One can set U =T, and V=T, (0 <m <n, 0 <l < n) and
(m,n) = 1. Let k be an integer such that km = 1modn. By a result of [2], one sees
deg f = kl £ O0mod n. In particular, deg f # 0. O

We shall show
Proposition 3.3. If dimV = 2, then V' has BUP.

Proof. By Proposition 3.1, V has LBUP. In fact, if there exists a G-map f : S(V) —
S(W), dimV > dim W, then dim W = 1, however, this contradicts that W has BUP.
We shall show that V' has RBUP. If V' does not have RBUP, then there is a G-map
f:SWU)— S(V) with dimU > 3. Let K = KerV. Since dimV = 2, G/K is a non-
trivial subgroup of O(2) and hence G/K is isomorphic to a cyclic group C, (m > 2),
a dihedral group D,, (m > 2), S* or O(2). Thus V is a 2-dimensional irreducible
representation or a direct sum of two non-trivial 1-dimensional representations. The
latter case happens only when G/K = Cy or Dy = Cy x Cy. Since VX is faithful,
in any case, there exists a subgroup L including K such that L/K = (), for some
prime p and L/K acts freely on VX = V. Let @ be a generator of L/K. Take a € G
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such that 7(a) = a, where 7 : G — G//K is the projection. Set H = (a) < G, which
is isomorphic to T% x C; for some k, I. Since VH = 0, one can take a finite cyclic
subgroup C' < H such that V¢ = 0 and so U® = 0. Restricting to C, we obtain a
C-map g = res¢f : S(U) — S(V). Since U decomposes into a direct sum of 1- or
2-dimensional irreducible representations as C-representations, U has a 2-dimensional
sub-representation U;. We obtain a C-map g\s,) : S(U1) — S(V). By Lemma 3.2,
deggisw,) # 0. On the other hand, S(U;) = S' bounds a 2-disk in S(U), hence
deg g;s(v,) = 0. This is a contradiction. Therefore U has RBUP. O

Corollary 3.4. If (i) dimV = 3, or (i) if dimV =4 and G/Gy is of odd order, then
V has LBUP.

Proof. Note that if G/G is of odd order, then a fixed-point-free representation is even
dimensional. If V' does not have LBUP, then there is a G-map f : S(V) — S(W),
dim W = 2, however this is impossible by Proposition 3.3. O

4. The Borsuk-Ulam property of C,,-representations

In this section, we consider the case of G' = C,4, where p, g are primes. Let a be a
generator of G. The 2-dimensional G-representation Ty, (= C), k € Z/pq, is given by
a-z = §§q1:, z € Ty, where £y = exp(%). When p and ¢ are odd primes, T}, is
irreducible for k£ # 0. If p is an odd prime and ¢ = 2, then Ty = 2R and T, = 2R,
where R, is given by a -z = —x, x € R., and the others are irreducible.

Note the following.

Lemma 4.1. Let G = C,y, where p, q are distinct primes.

(1) If p> q > 3, then a G-representation V is dimensionally equivalent to a1Ty @
apT, @ agTy for some non-negative integers a;.

(2) If p> q =2, then a G-representation V is dimensionally equivalent to ayT; &
a2 Ty @ apR. for some non-negative integers a;.

(3) If p=q > 3, then a G-representation V is dimensionally equivalent to a1Ty @
apT, for some non-negative integers a;.

(4) If p=q =2, then a G-representation V is dimensionally equivalent to ayT; &

azR. for some non-negative integers a;.

We first consider the case where p, ¢ are distinct odd primes. We may assume that

V=a1Th © a,T), D a1y
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for some non-negative integers a;, a,, a; by Lemma 4.1.

Theorem 4.2. Assume p > q > 3 and coefficients a; are positive integers.

(1) V=a,T, and V = a,T, have BUP.

(2) V =a1Ty has RBUP. Ifa; <2, thenV has BUP. If a; > 3, then V does not
have LBUP.

(3) V =a,T, ® a,Ty has LBUP and does not have RBUP.

4) V =a1Th ® a1, and V = a1Th & a,T, have RBUP. If a; = 1, then V has
BUP and if a1 > 2, then V does not have LBUP.

(5) V=a1Ty @ a,T, ® a,T, has neither LBUP nor RBUP.

Proof. Essentially, this follows from Theorem 3.3 of [6]. We here give a sketch of the
proof.
(1) This follows from the Borsuk-Ulam theorem and Proposition 2.6.
(2) This follows from Proposition 3.3 and the existence of a G-map f : S(37T1) —
S(T, & T,).
(3)
(

This follows from the Borsuk-Ulam theorem and and the existence of a G-map

fS(Th @ apTy ® aTy) — S(apTy, ® agTy).

(4) This follows from Proposition 2.6 and the existence of a G-maps f : S(V) —
S(apT, ® Ty).

(5) This follows from the existence of G-maps f : S(V) — S(a,T, & a4T,) and
g:S(TheV)—SWV). O

Corollary 4.3. Assume p > q > 3. Any G-representation with BUP is dimensionally
equivalent to one of the following: a,T),, a1y, T1, 211, T @ a,Tp, Th © ayTy.

Next, we consider G = Cyp, where p is an odd prime. By Lemma 4.1, we may

assume
V =a,T1 ® a1 D apRE.
We prepare the following.

Lemma 4.4. Let k be a positive integer such that 2k = 1 mod p. The map h : Ty DTy —
T5 ® R, defined by

h(z,w) = (2% — w?, 2P0 + zPw™P)

is a G-map and h=1({0}) = {0}. Thus h induces a G-map f : S(Ty®Tz) — S(To®R.).
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Proof. This h is given by a similar way as [1]. Let a be a generator of Cy,. Since
a(z,w) = (&2pz, £3,w) and 4k = 2mod 2p,
h(a(z,w)) = (£3,2% — E35w™, €8 €3 2MP PP — &5 PERP P iphr)
= (&,(z% = w), =(zP0" 4 2Pwt?))
= ah(z,w)
Thus & is a G-map. If h(z,w) = 0, then z = +w" and 2Pw*P + 2Pw*? = £2|w|?*P = 0.

Thus w =2z =0. O

Proposition 4.5. For V. =Ty @& Ty and V =T, & Ty, it follows that l¢(V) = 3 and
hence V' does not have LBUP. On the other hand Ty ® R, does not have RBUP.

Proof. By Lemma 4.4, there exists a G-map f : S(Thy @ T;) — S(Ta dR.), i = 1,2.
Thus (V) < 3. By Proposition 3.3, it follows that I¢(V) = 3. O

Corollary 4.6. V = a1T1 © a2T> @ apR., a1 > 1, ax > 1 and a, > 1, has neither
LBUP nor RBUP.

Proposition 4.7. Let V = a1 ® a,R.. If a; =1, then V has BUP. If a1 > 2, then
V' does not have LBUP.

Proof. Since V is Cy-free, it follows form Proposition 2.6 that V' has RBUP. If a; > 2,
then by Proposition 4.5, V' does not have LBUP. Suppose that a; =1 and f: S(V) —
S(W), dimW < dimV, is a G-map. Since a, < dim W(C)), if follows that W = a,R.

or (a, + 1)R.. However, each case is impossible by the Borsuk-Ulam theorem. 0
By the above facts, we obtain the following.

Theorem 4.8. Assume that p is an odd prime and coefficients a; are positive integers.

)

) V =asT> @ apR. has LBUP and does not have RBUP.
4) V = a1T1 ® axTy has RBUP and does not have LBUP.

)

if ap > 2.
(6) V=a1Ty ® axT> ® a,R. has neither LBUP nor RBUP.

Corollary 4.9. Let G = Cy,, where p is an odd prime. Any G-representation with
BUP is dimensionally equivalent to one of the following: a2Ts, apR., T1, Th ® apR..
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Finally we consider the case of Cp2. We may suppose that V = a1y ® a,T), if p
is an odd prime and V = a;T} ® asR. if p = 2. The following fact is known, see for

example [1].

Example 4.10. Let G = C)2.

(1) If p is an odd prime, then there exists a G-map f : S(411) — S(3T,).
(2) If p =2, then there exists a G-map f: S(2T1) — S(3R.).

This example and Propositions 3.1 and 3.3 lead to the following result.

Proposition 4.11. Let G = C).

(1) V. =a1Ty has RBUP, and does not have LBUP if a1 > 4.

(2) V. =T, has BUP.

(3) V =2Ty has BUP if p is an odd prime and does not have LBUP if p = 2.

(4) When p is an odd prime, V = a1y & a,T, does not RBUP if a,, > 3 and does
not have LBUP if a1 > 4.

(5) When p =2,V = a1T1 & asR. does not have RBUP if ay > 3 and does not
have LBUP if a1 > 2.

Corollary 4.12. Ty, 2T (p:odd), T}, (p:odd), R. and 2R, have BUP.

Several unsolved cases are left. For example, consider the case of V = 3T}. Since V
is free G-representation, ¥V has RBUP. On the other hand, we have (V) =5if p =2
by a result of [7], and I¢(V) =4 or 6 by a result of [3]. Thus V' does not have LBUP
if p = 2. When p is an odd prime, this is an open problem.
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