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Abstract. In the previous study, we defined the equivariant level and colevel of

representations. In this paper, we introduce the notion of Borsuk-Ulam property
of representations using these invariants. Furthermore, we show some fundamental

properties and provide illustrative examples of representations with the Borsuk-
Ulam property.

1. Introduction

Let V be an (orthogonal) G-representation, where G is a compact Lie group. In

[4, 5], we have determined the compact Lie groups with the Borsuk-Ulam property. In

particular, the Borsuk-Ulam theorem does not hold unless G is an elementary abelian

p-group or a torus. However, in a certain class of representations, the Borsuk-Ulam

theorem still holds. For example, if V and W are free G-representations, i.e., G acts

freely on S(V ) and S(W ), then the Borsuk-Ulam theorem holds.

In [6], we introduced the equivariant level lG(X) and colevel clG(X) of a fixed-

point-free G-space X. For a fixed-point-free G-representation sphere S(V ), we set

lG(V ) = lG(S(V )) and rG(V ) = clG(S(V )).

Definition. (1) We say that V has the left Borsuk-Ulam property (LBUP) if

lG(V ) = dimV .

(2) We say that V has the right Borsuk-Ulam property (RBUP) if rG(V ) = dimV .

(3) We say that V has the Borsuk-Ulam property (BUP) if lG(V ) = rG(V ) =

dimV , i.e., V has LBUP and RBUP.

We say that V is fixed-point-free if S(V ) is fixed-point-free, i.e., V G = 0, and

also that V is free if G acts freely on S(V ). The Borsuk-Ulam theorem for G-maps

is equivalent to that any fixed-point-free G-representation has BUP. Therefore, if G
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is an elementary abelian p-group Ck
p or a k-torus T k, then any fixed-point-free G-

representation has BUP.

In this paper, we show some fundamental properties of lG(V ) and rG(V ) and provide

some examples of G-representations with the left or right Borsuk-Ulam property.

2. Fundamental facts of the Borsuk-Ulam property

Unless otherwise stated below, we assume that G-representations are orthogonal and

fixed-point-free, and a subgroup of G means a closed subgroup. Furthermore all maps

between spaces are assumed to be continuous.

We first recall the definition of lG(S(V )) and clG(S(V )) from [6]. Let LG(S(V )) be

the set of G-representations W such that there exists a G-map f : S(V ) → S(W ), and

CLG(S(V )) the set of G-representations U such that there exists a G-map g : S(U) →
S(V ).

Definition.

(1) lG(V ) = lG(S(V )) := inf{dimW |W ∈ LG(S(V ))}.
(2) rG(V ) = clG(S(V )) := sup{dimU |U ∈ CLG(S(V ))}.

As a convention, we set lG(V ) = rG(V ) = 0 when V = 0. Clearly

0 ≤ lG(V ) ≤ dimV ≤ rG(V ) ≤ ∞.

Definition. We say that a G-map f : S(V ) → S(U) realizes lG(V ) if lG(V ) = dimU .

In this case we also say that the G-representation U realizes lG(V ). Similarly, we say

that a G-map f : S(U) → S(V ) or U realizes rG(V ) if rG(V ) = dimU .

We first note the following.

Proposition 2.1. If U realizes lG(V ) [resp. rG(V )], then U has LBUP [resp. RBUP ].

Proof. Let f : S(V ) → S(U) be a G-map realizing lG(V ). If U does not have LBUP,

then there is a G-map g : S(U) → S(W ) with dimU > dimW . Then g ◦ f : S(V ) →
S(W ) implies lG(V ) > dimW . This is a contradiction. The case of RBUP is similar.

�

Proposition 2.2. If V has LBUP [resp. RBUP ], then any sub-representation U of V

has LBUP [resp. RBUP ].
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3. Low dimensional cases

In this section, we discuss the Borsuk-Ulam property of G-representations of low

dimensions.

When dimV = 0, V has BUP by convention. When dim V = 1, S(V ) consists of

two points with non-trivial action. Therefore there are no G-maps from S(U) with

dimU ≥ 2 since S(U) is connected. Thus we have

Proposition 3.1. If dimV = 1, then V has BUP. �

Next, we consider the case of dim V = 2. We begin with the following lemma.

Lemma 3.2. Let Cn be a (non-trivial ) cyclic group of order n and U , V (fixed-point-

free) 2-dimensional Cn-representations. Then the degree of any Cn-map f : S(U) →
S(V ) is non-zero.

Proof. A 2-dimensional Cn-representation Tk (= C), k ∈ Z/n, is given by a · z = ξknx,

z ∈ Tk, where ξn = exp(2π
√−1/n). When k 	= 0 and k 	= n/2 if n is even, Tk is

irreducible and Tk
∼= T−k. Note that T0 = 2R and Tn/2

∼= 2Rε, where Rε is given by

a · x = −x, x ∈ Rε.

If necessary, considering UKerU , one may suppose that U is faithful. Then U is a

free Cn-representation. One can set U = Tm and V = Tl (0 < m < n, 0 < l < n) and

(m,n) = 1. Let k be an integer such that km ≡ 1modn. By a result of [2], one sees

deg f ≡ kl 	≡ 0modn. In particular, deg f 	= 0. �

We shall show

Proposition 3.3. If dimV = 2, then V has BUP.

Proof. By Proposition 3.1, V has LBUP. In fact, if there exists a G-map f : S(V ) →
S(W ), dimV > dimW , then dimW = 1, however, this contradicts that W has BUP.

We shall show that V has RBUP. If V does not have RBUP, then there is a G-map

f : S(U) → S(V ) with dimU ≥ 3. Let K = KerV . Since dimV = 2, G/K is a non-

trivial subgroup of O(2) and hence G/K is isomorphic to a cyclic group Cm (m ≥ 2),

a dihedral group Dm (m ≥ 2), S1 or O(2). Thus V is a 2-dimensional irreducible

representation or a direct sum of two non-trivial 1-dimensional representations. The

latter case happens only when G/K = C2 or D2 = C2 × C2. Since V K is faithful,

in any case, there exists a subgroup L including K such that L/K ∼= Cp for some

prime p and L/K acts freely on V K = V . Let ā be a generator of L/K. Take a ∈ G
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such that π(a) = ā, where π : G → G/K is the projection. Set H = 〈a〉 ≤ G, which

is isomorphic to T k × Cl for some k, l. Since V H = 0, one can take a finite cyclic

subgroup C ≤ H such that V C = 0 and so UC = 0. Restricting to C, we obtain a

C-map g = resCf : S(U) → S(V ). Since U decomposes into a direct sum of 1- or

2-dimensional irreducible representations as C-representations, U has a 2-dimensional

sub-representation U1. We obtain a C-map g|S(U1) : S(U1) → S(V ). By Lemma 3.2,

deg g|S(U1) 	= 0. On the other hand, S(U1) ∼= S1 bounds a 2-disk in S(U), hence

deg g|S(U1) = 0. This is a contradiction. Therefore U has RBUP. �

Corollary 3.4. If (i ) dimV = 3, or (ii ) if dimV = 4 and G/G0 is of odd order, then

V has LBUP.

Proof. Note that if G/G0 is of odd order, then a fixed-point-free representation is even

dimensional. If V does not have LBUP, then there is a G-map f : S(V ) → S(W ),

dimW = 2, however this is impossible by Proposition 3.3. �

4. The Borsuk-Ulam property of Cpq-representations

In this section, we consider the case of G = Cpq, where p, q are primes. Let a be a

generator of G. The 2-dimensional G-representation Tk (= C), k ∈ Z/pq, is given by

a · z = ξkpqx, z ∈ Tk, where ξpq = exp( 2π
√−1
pq ). When p and q are odd primes, Tk is

irreducible for k 	= 0. If p is an odd prime and q = 2, then T0 = 2R and Tp
∼= 2Rε,

where Rε is given by a · x = −x, x ∈ Rε, and the others are irreducible.

Note the following.

Lemma 4.1. Let G = Cpq, where p, q are distinct primes.

(1) If p > q ≥ 3, then a G-representation V is dimensionally equivalent to a1T1 ⊕
apTp ⊕ aqTq for some non-negative integers ai.

(2) If p > q = 2, then a G-representation V is dimensionally equivalent to a1T1 ⊕
a2T2 ⊕ apRε for some non-negative integers ai.

(3) If p = q ≥ 3, then a G-representation V is dimensionally equivalent to a1T1 ⊕
apTp for some non-negative integers ai.

(4) If p = q = 2, then a G-representation V is dimensionally equivalent to a1T1 ⊕
a2Rε for some non-negative integers ai.

We first consider the case where p, q are distinct odd primes. We may assume that

V = a1T1 ⊕ apTp ⊕ aqTq
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for some non-negative integers a1, ap, aq by Lemma 4.1.

Theorem 4.2. Assume p > q ≥ 3 and coefficients ai are positive integers.

(1) V = apTp and V = aqTq have BUP.

(2) V = a1T1 has RBUP．If a1 ≤ 2，then V has BUP. If a1 ≥ 3, then V does not

have LBUP.

(3) V = apTp ⊕ aqTq has LBUP and does not have RBUP.

(4) V = a1T1 ⊕ apTp and V = a1T1 ⊕ aqTq have RBUP. If a1 = 1, then V has

BUP and if a1 ≥ 2, then V does not have LBUP.

(5) V = a1T1 ⊕ apTp ⊕ aqTq has neither LBUP nor RBUP.

Proof. Essentially, this follows from Theorem 3.3 of [6]. We here give a sketch of the

proof.

(1) This follows from the Borsuk-Ulam theorem and Proposition 2.6.

(2) This follows from Proposition 3.3 and the existence of a G-map f : S(3T1) →
S(Tp ⊕ Tq).

(3) This follows from the Borsuk-Ulam theorem and and the existence of a G-map

f : S(T1 ⊕ apTp ⊕ aqTq) → S(apTp ⊕ aqTq).

(4) This follows from Proposition 2.6 and the existence of a G-maps f : S(V ) →
S(apTp ⊕ Tq).

(5) This follows from the existence of G-maps f : S(V ) → S(apTp ⊕ aqTq) and

g : S(T1 ⊕ V ) → S(V ). �

Corollary 4.3. Assume p > q ≥ 3. Any G-representation with BUP is dimensionally

equivalent to one of the following: apTp, aqTq, T1, 2T1, T1 ⊕ apTp, T1 ⊕ aqTq.

Next, we consider G = C2p, where p is an odd prime. By Lemma 4.1, we may

assume

V = a1T1 ⊕ a2T2 ⊕ apRε.

We prepare the following.

Lemma 4.4. Let k be a positive integer such that 2k ≡ 1mod p. The map h : T1⊕T2 →
T2 ⊕ Rε defined by

h(z, w) = (z2 − w2k, zpw̄kp + z̄pwkp)

is a G-map and h−1({0}) = {0}. Thus h induces a G-map f : S(T1⊕T2) → S(T2⊕Rε).
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Finally we consider the case of Cp2 . We may suppose that V = a1T1 ⊕ apTp if p

is an odd prime and V = a1T1 ⊕ a2Rε if p = 2. The following fact is known, see for

example [1].

Example 4.10. Let G = Cp2 .

(1) If p is an odd prime, then there exists a G-map f : S(4T1) → S(3Tp).

(2) If p = 2, then there exists a G-map f : S(2T1) → S(3Rε).

This example and Propositions 3.1 and 3.3 lead to the following result.

Proposition 4.11. Let G = Cp2 .

(1) V = a1T1 has RBUP, and does not have LBUP if a1 ≥ 4.

(2) V = T1 has BUP.

(3) V = 2T1 has BUP if p is an odd prime and does not have LBUP if p = 2.

(4) When p is an odd prime, V = a1T1 ⊕ apTp does not RBUP if ap ≥ 3 and does

not have LBUP if a1 ≥ 4.

(5) When p = 2, V = a1T1 ⊕ a2Rε does not have RBUP if a2 ≥ 3 and does not

have LBUP if a1 ≥ 2.

Corollary 4.12. T1, 2T1 (p:odd ), Tp (p:odd ), Rε and 2Rε have BUP.

Several unsolved cases are left. For example, consider the case of V = 3T1. Since V

is free G-representation, V has RBUP. On the other hand, we have lG(V ) = 5 if p = 2

by a result of [7], and lG(V ) = 4 or 6 by a result of [3]. Thus V does not have LBUP

if p = 2. When p is an odd prime, this is an open problem.
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