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Computation of the K-theoretic Euler classes of representations

for a non-abelian group of order p® and exponent p

Tkumitsu NAGASAKI Y

Abstract. For an odd prime p, there exists a unique non-abelian group of or-
der p? and exponent p, denoted by Mp. In this article, we shall describe the
structure of the representation ring and compute the K-theoretic Euler classes of
Mp-representations.

1. Background

Let G be a compact Lie group. The K-theoretic Euler classes of G-representations
are utilized to obtain Borsuk-Ulam type results for G-maps, see [2], [7], [9], etc. A key
result is the following proposition due to Atiyah-Tall [1].

Proposition 1.1 ([1]). Let V and W be unitary G-representations. If there exits a
G-map h: S(V) = S(W), then

ec(W) = z(flea(V)
for some z(f) € R(G), where eq( ) denotes the K-theoretic Euler class of a represen-

tation.

However, the preceding researches treat only abelian compact Lie groups, e.g, finite
cyclic groups, circle groups and their products. In this article, we treat a non-abelian

group M, of order p? and exponent p which is given by
M, ={a,b,c|ba = abc, ac = ca, bc = cb}, see [6].

This group plays an important role in determining finite groups with the Borsuk-
Ulam property, see [8]. For other applications, it seems to be worth computing the

K-theoretic Euler classes of M,-representations.
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2. The group structure of M,

In this section, we describe subgroups, their normalizers and conjugacy classes of
G = M,. This group is known as a unique non-abelian finite group of order p* and
exponent p, see [6]. Note that ¢ = b~'a"'ba and C = (c) is the center of M,. Any
element g of M, is uniquely described as g = a®b'c" for some s,t,u € F,, where F,, is
the finite field of order p.

2.0.1. Conjugacy classes of elements. There are p*>+p—1 conjugacy classes of elements:
(a®b?) = {a®b', abic, ..., a*b P!}
for (s,t) # (0,0), and
(1), (c), ..., (cP71).
2.0.2. Subgroups. The subgroups of M, are listed as follows.

(1) Order 1. {1}.
(2) There are p? + p + 1 subgroups of order p:

©)
)

(a

(ab) oo {ab??) (b)
{acP~1) (abcpl) oo {abPTtePTh) <bc’;71>

(3) There are p + 1 subgroups of order p*:
(a,c), (ab,c), ---, {abP™'c), (b,c).
(4) Order p*. G = M,,.

2.0.3. Normalizers of subgroups. The normal subgroups are 1, {(c), the subgroups of

order p? and G.

In other subgroups, Ng((ab'c*)) = (ab,c) for t,u € Fp, and Ng({(bc")) = (b, c) for
uckF,.
2.0.4. Conjugacy classes of subgroups. There are 2p+5 conjugacy classes of subgroups.

The representatives are listed as follows.
{1}7 <a>7 <ab>7 e ) <abp_1>> <b>7 <C>,
(a,c), {ab,c), --- {abP"t¢), (bc), G.
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We set

Ky, = (ab®), Hp=(ab’,c) (0<k<p—1), K,=(b), H,=(bc).

3. The representation ring of M,

Let G be M, as before. In this section, we determine the complex representation
ring R(G) of G. First, we give the irreducible G-representations. Since G has a split
extension

1= {a,c) = G — (b) — 1,

where b = q(b), ¢ : G — G/{a, c) the projection, we can obtain the irreducible represen-

tations by the method described in [10]. We set H = Hy = (a,c) and K = K = (b).
Let X = Hom(H,C*), the ring of 1-dimensional irreducible H-representations (or
equivalently the character ring of H). Since H = C), x C),, X consists of the irreducible

representations Sy ; whose characters vy, ; are defined by
Yra(a) =€, Yri(c) =€,
for k,1 € Fp,, where £, is a primitive p-th root of unity. Then K acts on X by
Pni(h) = Pry(bhb), h € H.

Letting h = a®c%, we see b= hb = a®c*~* and 1y (b~ 1hb) = £Z(kfl)+m; hence we

obtain
PPrs = Y11
Therefore the representatives of the orbit set X/K are taken to be

Yo, k € Fp (fixed points), and g, | € F,, ~\ {0}.

Then vy, can be extended to a function on G by ¢y o(a®b'c") = Py o(a*c") = &F,
which gives a 1-dimensional G-representation, denoted by Si. On the other hand, there
are 1-dimensional irreducible G-representations 1;, [ € IF),, by lifting the 1-dimensional
irreducible K-representations whose characters are given by 7;(b) = §é. Thus we have
p? 1-dimensional G-representation Vi := Sk ® 1. The character xj,; of Vi is given
by

Xei(a) = &5, xua(b) =& and xpu(c) = 1.
Eventually, V4 ; is isomorphic to the lifting of the irreducible representation Vk,l of

G/(c) = (a,b) = C, x C,, whose character X, ; is given by X} ;(a) = 55 and ¥, ,(b) = &
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Next consider the H-representation Sy ,, whose character is ¥g ,, m € F, ~ {0}.
Then we have a p-dimensional irreducible representation U, := Indgso,m. The char-

acter x,, of Uy, is given by
0 Oort+#0
Xm(asbtcu) — . (S7é or # )
p& (s=1=0).

Consequently we have

Proposition 3.1. Let G = M),. The irreducible G-representations are given by

(1) Vi, for k,l € F,, whose character x is given by
Xk,l(asbtcu) _ £;k+tl’

and

(2) U, for m € Fy :=TF, \ {0}, whose character x, is given by

{0 (s#0ort#£0)

Xm(asbtcu) = mu
234 (s=t=0).

Hence R(G) is isomorphic to 7P +P=1 a5 additive groups.
Next we determine the ring structure of R(G).

Proposition 3.2. With notation as above,
( ) V1®0p ~ (C V0®1p ~C,
2) Viq = Vb 15
3) Viua® Vk/ v = Vi aars
4) Vi ® Uy, =2 Uy, and
PUmsn m+n#0inF,
@i jer,Vij m+n=0inTF,

(2)
3)
(4)
(5)

5) Up, ®Un’:{

Proof. Tt suffices to show that the characters of both sides coincide. Let g = a®b'c®.
(1) is clear.

(2) and (3) follows from

Xk (9)Xkr, 10 (g) = EFFIER T = s FHIOHIIRD) —

(4) If s # 0 or t # 0, then x,,(g) = 0; hence xx,:1(9)Xm(9) = xm(g). f s =t =0,
then xx(c*) = 1; hence xp,1(¢")xm (") = Xm(c*). Thus Xg,iXm = Xm-

A+ (9)-
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(5) In the case where m +n # 0 in F,,, if s # 0 or t # 0, then x,,(9)xn(9) =
0 = pXmin(g). If s =t =0, then x(c*)xn(c®) = p? ;(,m+n)u = pPXm+n(c*); thus
XmXn = PXm+n-

In the case where m +n = 0 in F,, set ¢ = 7, i x;; the character of &;;V; ;.

When s = t = 0, we see Xm(c*)xn(c?) = p? = ¥(c*). If s # 0 or t # 0, then
P(g) = (2, &5 (X, €5) = 0. Thus Xomxn = - O
Set x = V10, y = Vo1 and 2y, = Uy, m € Fy in R(G). Let R be a polynomial ring
R=7Z[z,y, z1,22,...,2p—1].

Consider the ideal I generated by the following elements in R:

(1) P — 17 yp - 17

(2) z2m — Zm, Y2m — 2m for m € Fy,

(3) Zm2n — Pzngn for m+n#0, m, n € Fy,

(4) zmzn — ZiJGFp z'y! for m+n =0, m, n € F}.

By Proposition 3.2, we obtain

Proposition 3.3. As commutative rings, R(G) is isomorphic to R/I.

4. The K-theoretic Euler classes of M,-representations

In equivariant K-theory, there exists the Thom isomorphism
b : Kg(X):= Ko(XT,+) = Ka(E) := Ka(D(E),S(E))

for any complex G-vector bundle over a locally compact based G-space, where X T is
the one-point compactification of X with infinite point +.

We consider the case of X = % a one-point space. By definition, the equivariant
complex K-group Kg(*) is naturally isomorphic to the representation ring R(G) as
commutative rings. Let 7y = ®(1) € Kg(V), called the Thom class, where 1 € R(G).
Then the K-theoretic Euler class is defined by

eg(V) = 8*(7'\/)7
where s : x — V is the zero map, i.e., s(x) =0 € V, and the induced map
s Ka(V) = Ka(VY,+) = Ka(x) = Ka(+ [ [+, +).

is a ring homomorphism. It is well-known that

n

ea(V) =) (-1)’A (V) € R(G),

=0
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where A(V) is the i-th exterior representation of V and n = dimc V, see [1], [3], [4],
[5], [7].
Proposition 4.1. The following hold.

(1) eg(VaW) =eag(V)eag(W) in R(G).

(2) If VG #£0, then eq(V) = 0.

Proof. (1)

)
(2) For the trivial representation C, eg(C) = C — A(C) = C — C = 0. If V¥ # 0, then
V is decomposed as V =V’ @ C. By (2), eq(V) = ec(V')eq(C) = 0. O

We now compute the Euler class of every irreducible M,-representation. The results

are the following,.

Theorem 4.2. In the representation ring R(G) of G = M, the following hold.
(1) eg(VkJ) =1- Vk,l (k, le Fp).
i@
(2) eq(Up) = Z(—l)ZLUmi (m € F3), where (¥) denotes the binomial coeffi-

. 1=1
cient.

Since a representation is detected by its character and the character is a class func-

tion on GG, we have

Proposition 4.3. Let G be a finite group and C(G) the set of representatives of con-

jugacy classes of cyclic subgroups of G. Then the restriction homomorphism
Res = (Resg) : R(G) — ©pecia)R(D)
is injective, see [10].

Proof of Theorem 4.2. (1) Since Vj; is 1-dimensional, A’V,; = 0 for i > 1. By the

definition of the Euler class, we obtain (1).



Computation of the A-theoretic Euler classes of representations for a non-abelian group of order p° and exponent p 27

(2) Note that C(G) for G = M), consists of Ky, for 0 < k < p, C the center of M,
and {1}. Note also Resik U, = C[C))]. Indeed,

Resf(k Un = Res%v Indflo So.m

= Ind{jRes() So,m = Ind (i C = C[C,].

@
Set W = Z(—l)l?Umi. Then
i=1

Resng = i(—l)i (]Z)

i=1

3
3

On the other hand, we also see Resf(k ec(Un) = eq(C[Cy]) = 0, since C[C,]°» = C.
Therefore, we conclude that Res?(k eq(Un) = Resng.
Since Resg U,, = pT,,, where T,, is the 1-dimensional irreducible representation of

C = Cp given by cz = £, it follows that

Resfl IV = §<—w (7)o iz:(_l)i (")

&~ (1 = Tpn)P =2 Res& e(Upy,).

1

Clearly Res?l} e(Un) = Res?l} W (= 0). Thus we obtain (2) by Proposition 4.3. [
Finally we provide a couple of examples.

Example 4.4. If a G-representation V includes Vi ; @ U,, for some k, [, m, then
€G(V) =0.

Proof. 1t suffices to show eq (Vi @ Up,) = 0 by Proposition 4.1. By Proposition 3.2

and Theorem 4.2, we see

eqG(Vii ® Un) = ea(Vig)ea(Un) = (1 = Vig)ea(Un) = ea(Un) — ea(Un) = 0.

Example 4.5. If a G-representation V includes
U=Vop1®Vip_1 @& Vp_1p-1® Vio,

then eg(V) = 0.
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Proof. Tt suffices to show eq(U) = 0. By Theorem 4.2,
p—1
cc(U)=(1—a) [T -2y,
i=0
where x = Vj 9 and y = Vp1. Note that Res?{k(l —aFyP~1)y =0 for 0 <k <p—1and
Resgp(l — x) = 0. Moreover, Res&(1 — ) = 0 and Resﬁ}(l — ) = 0. Therefore we
obtain that Res eq(U) = 0 for all D € C(G). This implies eq(U) = 0. O

Remark. These examples also follow from the following fact: If VP # 0 for every
D € C(G), then eq(V) =0, see [7].
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