
The equivariant level and colevel of representation spheres
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Abstract. We introduce the equivariant level lG(X) and colevel clG(X) of a G-

space X. These are generalizations of classical invariants for spaces with free
involutions. We first provide general properties of lG(X) and clG(X). Secondly
we provide some computations or estimates of lG(X) and clG(X) when G is a finite

cyclic group Cpq of order pq, where p and q are primes and X is a G-representation

sphere.

1. Introduction

Let G be a compact Lie group and X a (non-empty) G-space X. Let V and W be

(finite dimensional) fixed-point-free orthogonal representations. Let LG(X) be the set

of G-representations W such that there exists a G-map f : X → S(W ), and CLG(X)

the set of G-representations V such that there exists a G-map g : S(V ) → X. We

define the equivariant level lG(X) and colevel clG(X) of X as follows.

Definition.

(1) G-level: lG(X) := inf{dimW |W ∈ LG(X)}.
(2) G-colevel: clG(X) := sup{dimV |V ∈ CLG(X)}.

If LG(X) = ∅, e.g., XG �= ∅, then we set lG(X) = ∞. The G-level lG(X) cannot be

0 since if W = 0, then there are no G-maps to S(W ) = ∅. Therefore 1 ≤ lG(X) ≤ ∞.

If V = 0, then S(V ) = ∅. We regard ∅ : ∅ → X as a G-map. Hence ∅ ∈ CLG(X)

and we see 0 ≤ clG(X) ≤ ∞. Also if XG �= ∅, then there is a G-map f : S(V ) → X

for any V , and hence clG(X) = ∞.

The G-level lG(X) is a generalization of the level in [7] or the coindex in [4], [5] for

spaces with free involutions. The G-colevel clG(X) is a generalization of the index in

[4], [5] for spaces with free involutions.
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As related invariants, there are the genera γG(X) and γ̃G(X) of X defined by [1].

We mention a relation between lG(X) and γ̃G(X) or γG(X) in the next section.

One of purposes of this paper is to provide general properties of lG(X) and clG(X).

Secondly we provide some computations or estimates when G is a finite cyclic group

of order pq, where p and q are primes.

2. General properties of the equivariant level and colevel

Since lG(X) = clG(X) = ∞ when X �= ∅, we hereafter assume that X is a fixed-

point-free G-space, i.e., XG = ∅. We begin by the following results.

Proposition 2.1. Let X and Y be G-spaces and f : X → Y a G-map.

(1) lG(X) ≤ lG(Y ).

(2) clG(X) ≤ clG(Y ).

Proof. (1) Let lG(Y ) = k. There exists a G-map g : Y → S(W ), dimW = k, realizing

the level k. Composing g with f , one obtains a G-map g ◦f : X → S(W ). This implies

lG(X) ≤ lG(Y ).

(2) Let clG(X) = k. There exists a G-map g : S(V ) → X, dimV = k, realizing the

colevel k and then one obtains a G-map f ◦ g : S(V ) → Y . This implies clG(X) ≤
clG(Y ). �

Proposition 2.2. Let H be a closed normal subgroup of G and π : G → Q = G/H

the projection. Let X be a Q-space and InfGQX is the inflation via π.

(1) lG(Inf
G
QX) = lQ(X).

(2) clG(Inf
G
QX) ≥ clQ(X).

Proof. (1) Let lQ(X) = k and f : X → S(W ), dimW = k, be a Q-map realizing the

level k. Then InfGQf : InfGQX → S(InfGQW ) is a G-map. This implies lG(Inf
G
QX) ≤

lQ(X). Next let l(InfGQX) = k and f : InfGQX → S(W ) be a G-map realizing k. Since

Gx ≥ H for x ∈ InfGQX, it follows that f(InfGQX) ⊂ S(W )H . Since WH is a G-

representation, by the minimality of k, one sees that WH = W . Therefore one obtains

a Q-map fH : X → S(W ) and thus lQ(X) ≤ k = lG(Inf
G
QX). Thus (1) holds.

(2) Let clQ(X) = k and f : S(V ) → X, dimV = k, be a Q-map realizing the

colevel k. Then InfGQf : S(InfGQV ) → InfGQX is a G-map. This implies clG(Inf
G
QX) ≥

clQ(X). �

Proposition 2.3. Let H be a closed subgroup of G and X a G-space.
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(1) If H is normal and XH = ∅, then lH(ResHX) ≤ lG(X).

(2) If XH = ∅, then clH(ResHX) ≥ clG(X).

Proof. (1) Assume lG(X) = k. Let f : X → S(W ), k = dimW , be a G-map realizing

the level k. Then ResHf : ResHX → ResHS(W ) is an H-map with (ResHX)H = ∅.
Since H is normal, f maps X into S(W ) � S(WH). Since S(W ) � S(WH) is H-

homotopy equivalent to S(WH), where WH is the orthogonal complement of V H in

V . Thus there exists an H-map f ′ : ResHX → S(VH) with S(VH)H = ∅. Since

dimVH ≤ k, it follows that lH(ResHX) ≤ lG(X).

(2) Assume clG(X) = k. Let f : S(V ) → X, k = dimV , be a G-map realiz-

ing the colevel k. Then ResHf : S(ResHV ) → ResHX is an H-map. This implies

clH(ResHX) ≥ clG(X). �

Proposition 2.4. If X is a finite dimensional G-CW complex with finite orbit types,

then lG(X) < ∞.

Proof. There exists a fixed-point-free representationW such that dimXH ≤ dimS(W )H

for every H ∈ Iso(X). Then we see

Hk(XH/WH,X>H/WH;πk−1(S(W ))) = 0

for 1 ≤ k ≤ dimXH/WH. By equivariant obstruction theory [6], one can construct a

G-map f : X → S(W ). Thus lG(X) ≤ dimW . �

When X has infinitely many orbit types, lG(X) can be ∞. For example, let G =

S1 be a circle group and Hk = Ck a finite cyclic subgroup of order k ≥ 1. Set

X =
∐

q: prime G/Hq, which is 1-dimensional G-CW complex with infinitely many orbit

types. Since a representation sphere S(W ) has finitely many orbit types, see [3], and

Hq are maximal isotropy subgroups in S1, there are no G-maps f : X → S(W ). This

means LG(X) = ∅ and lG(X) = ∞ by definition.

We next provide some results obtaining from Borsuk-Ulam type theorems. Let

G be an elementary abelian group Ck
p of rank k or a k-dimensional torus T k. As

is well-known, the Borsuk-Ulam theorem holds for these G, i.e., if there exists a G-

map f : S(V ) → S(W ) between fixed-point-free representation spheres, then dimV ≤
dimW holds. Also, if G acts freely on S(V ) and S(W ), then if there exists a G-map

f : S(V ) → S(W ), then dimV ≤ dimW holds.

Proposition 2.5. Let G = Ck
p or T k and X a G-space. Then clG(X) ≤ lG(X).
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Proof. Let f : S(V ) → X, clG(X) = dimV and g : X → S(W ), lG(X) = dimW

be G-maps realizing the equivariant colevel and level respectively. We have a G-map

g ◦ f : S(V ) → S(W ). By the Borsuk-Ulam theorem, we obtain clG(X) ≤ lG(X). �

Assume that X is a G-representation sphere S(V ). Note that lG(S(V )) ≤ dimV

and clG(S(V )) ≥ dimV , since the identity map id : S(V ) → S(V ) is a G-map.

Proposition 2.6. The following inequalities hold.

(1) lG(S(V ⊕W )) ≤ lG(S(V )) + lG(S(W )).

(2) clG(S(V ⊕W )) ≥ clG(S(V )) + clG(S(W )).

Proof. (1) Let lG(S(V )) = k and lG(S(W )) = l. Let f : S(V ) → S(V ′), k = dimV ′

and g : S(W ) → S(W ′), l = dimW ′ be G-maps realizing the levels k and l. Then

f ∗ g : S(V ⊕W ) → S(V ′ ⊕W ′) is a G-map, where ∗ means join. This implies

lG(S(V ⊕W )) ≤ k + l = lG(S(V )) + lG(S(W )).

(2) This is proved by a similar argument as (1). �

These facts lead us to the following result.

Proposition 2.7. The following statements hold.

(1) Let G = Ck
p or T k. For any fixed-point-free G-representation V , it follows that

lG(S(V )) = clG(S(V )) = dimV.

(2) If G acts freely on S(W ), then clG(S(W )) = dimW .

Proof. (1) Let f : S(V ) → S(W ) be a G-map. By the Borsuk-Ulam theorem, dimV ≤
dimW . This means dimV ≤ lG(S(V )). As mentioned above, since dimV ≥ lG(S(V )),

it follows that lG(S(V )) = dimV . Similarly one can see clG(S(V )) = dimV .

(2) Let f : S(V ) → S(W ) be a G-map. Since G acts freely on S(W ), it follows that

G acts freely on S(V ). Hence dimV ≤ dimW holds by the Borsuk-Ulam theorem.

This implies clG(S(W )) = dimW . �

Remark. Even if G acts freely on S(V ), it is not necessary to hold lG(S(V )) = dimV .

Such an example can be found in Theorem 3.3 in the next section. Furthermore, if G is

neither Ck
p nor T k, then there exists a G-representation V such that clG(S(V )) > dimV

by results of [12], [13].

At the end of this section, we mention a relation of the equivariant level and the

genus introduced by [1]. Let SG be the set of closed proper subgroups of G. Let
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Iso(X) be the set of isotropy subgroups of X, where X is a G-space with XG = ∅.
The SG-genus γ̃G(X) of X is defined by the minimal number k such that there exists

a G-map f : X → ∗ki=1G/Hi, Hi ∈ SG, where ∗ means join. Similarly the Iso(X)-

genus γG(X) of X is defined by the minimal number k such that there exists a G-map

f : X → ∗ki=1G/Hi, Hi ∈ Iso(X). Clearly γ̃G(X) ≤ γG(X). We summarize general

properties of genera of X. See [1] for more information.

Proposition 2.8. The following statements hold.

(1) If there exists a G-map f : X → Y , then γ̃G(X) ≤ γ̃G(Y ).

(2) If there exists a G-map f : X → Y and Iso(X) = Iso(Y ), then γG(X) ≤ γG(Y ).

(3) γ̃G(S(V ⊕ W )) ≤ γ̃G(S(V )) + γ̃G(S(W )) and γG(S(V ⊕ W )) ≤ γG(S(V )) +

γG(S(W )).

Proof. (1) Let γ̃G(Y ) = k and g : Y → ∗kG/Hi a G-map realizing k. Considering a

G-map g ◦ f : X → ∗kG/Hi, one sees γ̃G(X) ≤ γ̃G(Y ).

(2) Let γG(Y ) = k and h : X → ∗kG/Hi, Hi ∈ Iso(Y ), a G-map realizing k. Since

Hi ∈ Iso(X), it follows that γG(X) ≤ γG(Y ).

(3) Let γ̃G(S(V )) = k and γ̃G(S(W )) = l. Let f : X → ∗ki=1G/Hi and g : X →
∗lj=1G/Kj be G-maps realizing k and l respectively. Then there exists a G-map

f ∗ g : S(V ⊕W ) ∼= S(V ) ∗ S(W ) → (∗ki=1G/Hi) ∗ (∗lj=1G/Kj).

This implies the first inequality. Assume Hi ∈ Iso(S(V )) and Kj ∈ Iso(S(W )). Since

Iso(S(V )) ∪ Iso(S(W )) ⊂ Iso(S(V ⊕W )), the second inequality holds. �

Assume hereafter that G is a compact abelian Lie group and X = S(V ) is a fixed-

point-free representation sphere. Decompose V into V = ⊕KV (K), where V (K) is

the direct sum of irreducible sub-representations with kernel K. Let I(V ) be the set

of K with V (K) �= 0. Note that G/K is Cp (p: prime) or S1 for K ∈ I(V ) and

I(V ) ⊂ Iso(S(V )). Set UK = InfGG/KU{1} for K ∈ I(V ), where U{1} is the standard

G/K-representation. Note that dimUK = 1 if |G/K| = 2 and dimUK = 2 otherwise.

Let U ′K be another irreducible G-representation with kernel K. Then there exists

G-isovariant maps f : S(UK) → S(U ′K) and g : S(U ′K) → S(UK) by results of [9].

Therefore we may assume that V (K) is a direct sum of UK in computing lG(S(V )),

clG(S(V )), γ̃G(S(V )) and γG(S(V )). We set I2(V ) = {K ∈ I(V ) |G/K ∼= C2} and

I ′(V ) = I(V )� I2(V ). We show the following.

Theorem 2.9. Let G be abelian. Then γ̃G(S(V )) ≤ lG(S(V )) ≤ 2γG(S(V )).
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Proof. Let γG(S(V )) = k and g : S(V ) → ∗ki=1G/Hi, Hi ∈ Iso(S(V )) aG-map realizing

γ̃G(S(V )) = k. For any Hi, one can take Ki ∈ I(V ) such that Hi ≤ Ki. Clearly there

exits a G-map j : ∗ki=1G/Hi → ∗ki=1G/Ki and there exists a G-map fi : G/Ki →
S(UKi

) and hence one obtains a G-map

h := ∗ki=1 fi : ∗ki=1 G/Ki → S(⊕k
i=1 UKi).

Thus we have a G-map h ◦ j ◦ g : S(V ) → S(⊕k
i=1 UKi

). Since dimUKi
≤ 2, it follows

that lG(S(V )) ≤ 2γG(S(V )).

We next show lG(S(V )) ≥ γ̃G(S(V )). Let lG(S(V )) = l and f : S(V ) → S(W ),

dimW = l, a G-map realizing lG(S(V )) = l. It it easy to see that there exists a

G-map fK : S(UK) ∼= S0 → G/K ∼= C2 for K ∈ I2(W ) and there exists a G-map

gL : S(UL) ∼= S1 → G/L ∗ G/L for L ∈ I ′(W ). Thus we obtain G-maps hK :

S(W (K)) → ∗wKG/K for K ∈ I2(W ) and hL : S(W (L)) → ∗vL(G/L ∗ G/L) for

L ∈ I ′(W ), where vK = dimW (K) and vL = dimW (L)/2. Therefore we obtain a

G-map

h : S(W ) → ∗K∈I2(W )(∗wKG/K) ∗ ∗L∈I′(W )(∗vL(G/L ∗G/L)).

Composing a G-map h with f , we obtain that

γ̃G(S(V )) ≤
∑

K∈I2(W )

wK +
∑

L∈I′(W )

2vL = dimW = lG(S(V )).

�

Remark. In the above proof, if I(W ) ⊂ I(V ), then γG(S(V )) ≤ lG(S(V )) holds.

Example 2.10. Let G = S1 and V = U{1}. Then γ̃G(S(V )) = γG(S(V )) = 1 and

lG(S(V )) = 2. In this case, lG(S(V )) = 2γG(S(V )) holds.

More generally, the following result holds.

Proposition 2.11. The following statements hold.

(1) If G = T k, then lG(S(V )) = 2γ̃G(S(V )) = 2γG(S(V )) = dimV .

(2) If G = Ck
p , then lG(S(V )) = γ̃G(S(V )) = γG(S(V )) = dimV .

Proof. By Proposition 2.7, we already know that lG(S(V )) = dimV for G = T k and

Ck
p . By results of [1], it is known that γ̃G(S(V )) = γG(S(V )) = (dimV )/2 when

G = T k and γ̃G(S(V )) = γG(S(V )) = dimV when G = Ck
p . Thus the desired result

holds. �
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3. The equivariant level and colevel of Cpq-representation spheres

Let G be a cyclic group Cpq of order pq, where p, q are distinct primes. In this

section, we compute the equivariant level and colevel of G-representation spheres in

several cases. We set V = V (1)⊕ V (Cp)⊕ V (Cq). Set Uk = InfGG/Ck
U{1} for k = 1, p

or q, where U{1} is the standard irreducible Cpq/k-representation. Note that if p and

q are odd primes, then dimUk = 2, and if q = 2, then dimUk = 2 for k = 1, 2, and

dimUp = 1. We may assume that V (Ck) is a direct sum of copies of Uk for k = 1, p, q

as mentioned before.

We here consider the case where p and q are distinct primes. We discuss the results

in several cases.

Theorem 3.1. Let G = Cpq, where p and q are distinct primes with p > q and V a

fixed-point-free G-representation. Then

(1) lG(S(V )) ≥ dimV (Cp) + dimV (Cq) = dimV Cp + dimV Cq .

(2) If dimV Cp ≥ 2 and dimV Cq �= 0, then

lG(S(V )) = dimV (Cp) + dimV (Cq) = dimV Cp + dimV Cq .

(3) If dimV Cp ≥ 2 and dimV Cq �= 0, then clG(S(V )) = ∞.

Proof. (1) Let f : S(V ) → S(W ) be a G-map. Applying the Borsuk-Ulam theorem to

a Cp-map fCq : S(V )Cq = S(V (Cq)) → S(W )Cq = S(W (Cq)), one sees dimV (Cq) ≤
dimW (Cq). Similarly one sees dimV (Cp) ≤ dimW (Cp). Since dimW ≥ dimV (Cp)⊕
V (Cq), it follows that lG(S(V )) ≥ dimV (Cp) + dimV (Cq).

(2) Since Cpq/Cq is of odd order, it follows that dimV (Cq) ≥ 2. Set W = V (Cp)⊕
V (Cq) and consider the identity map

i : S(V (Cp)⊕ V (Cq)) → S(V (Cp)⊕ V (Cq)).

By an obstruction theoretic argument of [15] or [10], i is extended to a G-map g :

S(V ) → S(V (Cp)⊕V (Cq)). Therefore lG(S(V )) ≤ dimV (Cp)+dimV (Cq). Therefore

(2) holds.

(3) Similarly there exits a G-map gn : S(nU1 ⊕ V (Cp) ⊕ V (Cq)) → S(V ) for any

n ≥ 1. This implies that clG(S(V )) = ∞. �

Remark. By results of [2], ifG is not a p-toral group, then there exists aG-representation

V such that clG(S(V )) = ∞, and if G is a finite p-group, then clG(S(V )) < ∞.
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Theorem 3.2. Let G = Cpq, where p and q are distinct primes with p > q and V

a fixed-point-free G-representation. Assume that dimV (Cp) = 0 or dimV (Cq) = 0.

Then clG(S(V )) = dimV .

Proof. We may suppose V (Cq) = 0, hence V = V (1)⊕ V (Cp). Let f : S(W ) → S(V )

be a G-map. By the Borsuk-Ulam theorem, one has dimW (Cp) ≤ dimV (Cp) and

dimW (Cq) = 0. Thus W = W (1)⊕W (Cp). Since Cq acts freely on S(W ) and S(V ), it

follows from the Borsuk-Ulam theorem that dimW ≤ dimV . Thus clG(S(V )) ≤ dimV .

On the other hand, clearly clG(S(V )) ≥ dimV and therefore clG(S(V )) = dimV . �

Theorem 3.3. Let G = Cpq, where p and q are distinct primes with p > q and V a

fixed-point-free G-representation.

(1) Suppose that V (Cp) = 0, V (Cq) �= 0. Then

(a) If V (1) �= 0 and q �= 2, then lG(S(V )) = dimV (Cq) + 2.

(b) If V (1) �= 0 and q = 2, then dimV (Cq) + 1 ≤ lG(S(V )) ≤ dimV (Cq) + 2.

(c) If V (1) = 0, then lG(S(V )) = dimV (Cq) = dimV.

(2) Suppose that V (Cp) �= 0, V (Cq) = 0. Then

(a) If V (1) �= 0 and dimV (Cp) ≥ 2, then lG(S(V )) = dimV (Cp) + 2.

(b) If V (1) �= 0 and dimV (Cp) = 1 (this happens only when q = 2), then

3 ≤ lG(S(V )) ≤ 4.

(c) If V (1) = 0, then lG(S(V )) = dimV (Cp) = dimV.

(3) Suppose that V (Cp) = V (Cq) = 0. Then

(a) If q is an odd prime and dimV = 2. then lG(S(V )) = 2.

(b) If q is an odd prime and dimV ≥ 4, then lG(S(V )) = 4.

(c) If q = 2, then 3 ≤ lG(S(V )) ≤ 4.

Proof. (1) Suppose that V = V (1) ⊕ V (Cq). Let f : S(V ) → S(W ) be a G-map. By

the Borsuk-Ulam theorem, one has dimV (Cq) ≤ dimW (Cq).

Set U ′p = Up for q is an odd prime, and U ′p = 2Up for q = 2. Thus dimU ′p = 2. Set

W ′ = U ′p ⊕ V (Cq). Then there exits a G-map g : S(V ) → S(W ′) as before. Hence

lG(S(V )) ≤ dimW ′ = dimV (Cq) + 2. By Theorem 3.1, dimV (Cq) ≤ lG(S(V )). If

lG(S(V )) = dimV (Cq), then there exists a G-map f : S(V ) → S(V (Cq)), but this

contradicts the Borsuk-Ulam theorem for a Cp-map. Therefore the desired results (a)

and (b) hold.

(1-c) Since V = V (Cp), it follows from Theorem 2.2 that lG(V ) ≤ lCq (V
Cp) = dimV .

On the other hand, lG(V ) ≥ dimV and therefore (c) holds.
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(2) The proof is similar with (1).

(3) By a similar argument, one sees that lG(S(V )) ≤ 4. If lG(S(V ) ≤ 2, then

there are no G-maps when dimV ≥ 4 by the Borsuk-Ulam theorem. Therefore 3 ≤
lG(S(V )) ≤ 4. �

Remark. Let G = C2p, where p is an odd prime. By a result of [11], if V = 2U1, then

lG(S(V )) = 3.

In almost cases, we have determined the equivariant level and colevel for Cpq. The

remaining cases are (1-b), (2-b) and (3-c) in Theorem 3.3. We would like to study

these cases in future research.

Finally we discuss the equivariant level when p = q. In this case, this is essentially

studied by [14] and [8]. We restate their results in our context. Set

L2m−1
p := S(mU1)/Cp,

where U1 is the standard free Cp2 -representation. If p = 2, then L2m−1
2 is the (2m−1)-

dimensional real projective space with the standard free C2-action, and if p is an odd

prime, then L2m−1
p is the (2m − 1)-dimensional lens space with the standard free Cp-

action.

Lemma 3.4. Let G = Cp2 . Then lG(S(mU1)) = lCp
(L2m−1

p ).

Proof. In the case of p = 2, i.e., G = C4. We may set V = V (1) ⊕ V (C2). Let

f : L2m−1
2 → S(Rl

ε) be a C2-map realizing lC2
(L2m−1

2 ) = l, where R
l
ε is the nontrivial

irreducible C2-representation. Let q : C4 → C2 be the projection and

π : S(mU1) → S(mU1)/C2 = L2m−1
2

be the covering map which is a q-equivariant map. Also the identity map

i : S(lU2) → S(lU2)/C2 = S(lRε)

is a q-equivariant map. Then f̃ := i−1 ◦ f ◦ π : S(mU1) → S(lU2) is a G-map over f .

Thus lG(S(mU1)) ≤ l = lC2
(RP 2m−1).

Conversely, let f : S(mU1) → S(W ), dimW = l, be a G-map realizing lG(S(V )) = l.

There exists a G-map j : S(U1) → S(U2 ⊕ U2), where U2 = InfGG/C2
Rε. Hence we may

suppose that W = lU2. Then f̄ : L2m−1
2 = S(mU1)/C2 → S(lU2)/C2 = S(lRε) is a

C2-map. Thus lC2(L
2m−1
2 ) ≤ l = lG(S(V )). Therefore, (1) holds.

When p is an odd prime, a similar argument leads to the formula. We omit the

detail. �
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The level lC2
(L2m−1

2 ) has been computed by [14] and lCp
(L2m−1

p ), p: odd prime, by

[8]. By Lemma 3.4, we obtain the following.

Proposition 3.5. The following hold.

(1) lC4
(S(mU1)) =

⎧⎪⎨
⎪⎩

m+ 1 m ≡ 0, 2 mod 8

m+ 2 m ≡ 1, 3, 4, 5, 7 mod 8

m+ 3 m ≡ 6 mod 8.

(2) If p is an odd prime, then

(a) 2〈(m − 2)/p〉 + 2 ≤ lCp2
(S(mU1)) ≤ 2〈(m − 2)/p〉 + 4 for m �≡ 2 mod p,

where 〈x〉 denotes the smallest integer more than or equal to x.

(b) lCp2
(S(mU1)) = 2(m− 2)/p+ 4 for m ≡ 2 mod p.
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