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The equivariant level and colevel of representation spheres

Tkumitsu NAGASAKI D

Abstract. We introduce the equivariant level 5 (X) and colevel clg(X) of a G-
space X. These are generalizations of classical invariants for spaces with free
involutions. We first provide general properties of lg(X) and clg(X). Secondly
we provide some computations or estimates of [ (X) and clg(X) when G is a finite
cyclic group Cpq of order pq, where p and q are primes and X is a G-representation
sphere.

1. Introduction

Let G be a compact Lie group and X a (non-empty) G-space X. Let V and W be
(finite dimensional) fixed-point-free orthogonal representations. Let Lg(X) be the set
of G-representations W such that there exists a G-map f : X — S(W), and CLg(X)
the set of G-representations V' such that there exists a G-map g : S(V) — X. We
define the equivariant level I(X) and colevel clg(X) of X as follows.

Definition.
(1) G-level: Ig(X) := inf{dim W |W € Lg(X)}.
(2) G-colevel: clg(X) :=sup{dimV |V € CLg(X)}.
If La(X) =0, eg., X& # (), then we set Ig(X) = 0co. The G-level Ig(X) cannot be
0 since if W = 0, then there are no G-maps to S(W) = (. Therefore 1 < [g(X) < co.
If V=0, then S(V) =0. We regard 0 : ) — X as a G-map. Hence ) € CLg(X)
and we see 0 < clg(X) < co. Also if X& £ (), then there is a G-map f : S(V) =X
for any V, and hence clg(X) = .
The G-level l¢(X) is a generalization of the level in [7] or the coindex in [4], [5] for
spaces with free involutions. The G-colevel clg(X) is a generalization of the index in

[4], [5] for spaces with free involutions.
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As related invariants, there are the genera o (X) and J¢(X) of X defined by [1].
We mention a relation between [ (X) and 5 (X) or 7¢(X) in the next section.

One of purposes of this paper is to provide general properties of 5 (X) and clg(X).
Secondly we provide some computations or estimates when G is a finite cyclic group

of order pq, where p and ¢ are primes.

2. General properties of the equivariant level and colevel

Since lg(X) = clg(X) = oo when X # (), we hereafter assume that X is a fixed-
point-free G-space, i.e., X¢ = (). We begin by the following results.

Proposition 2.1. Let X and Y be G-spaces and f: X — Y a G-map.
(1) la(X) <la(Y).
(2) da(X) <ca(Y).

Proof. (1) Let lg(Y) = k. There exists a G-map g : Y — S(W), dim W = k, realizing
the level k. Composing g with f, one obtains a G-map go f : X — S(W). This implies
lg(X) <lg(Y).

(2) Let clg(X) = k. There exists a G-map g : S(V) = X, dim V = k, realizing the
colevel k and then one obtains a G-map fog: S(V) — Y. This implies clg(X) <
ca(Y). O

Proposition 2.2. Let H be a closed normal subgroup of G and w7 : G — Q = G/H
the projection. Let X be a Q-space and Inng is the inflation via .

(1) lg(InfGX) = lo(X).

(2) cle(InfGX) > clo(X).

Proof. (1) Let lg(X) =k and f: X — S(W), dimW = k, be a Q-map realizing the
level k. Then Infgf : Inng — S(InfgW) is a G-map. This implies lg(IIlng) <
lo(X). Next let l(Inng) =k and f: Inng — S(W) be a G-map realizing k. Since
G, > H for z € InfgX, it follows that f(InfGX) C S(W)H. Since WH is a G-
representation, by the minimality of k, one sees that W = . Therefore one obtains
a Q-map f7: X — S(W) and thus lg(X) < k = lg(Inng). Thus (1) holds.

(2) Let clg(X) = kand f : S(V) - X, dimV = k, be a @Q-map realizing the
colevel k. Then Inf$f : S(Inf&V) — InfX is a G-map. This implies clg(InfGX) >
clo(X). O

Proposition 2.3. Let H be a closed subgroup of G and X a G-space.
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(1) If H is normal and X =0, then Iz (Resg X) < lg(X).
(2) If XH =0, then clg(Resg X) > clg(X).

Proof. (1) Assume lg(X) = k. Let f: X — S(W), k = dim W, be a G-map realizing
the level k. Then Resy f : Resy X — ResgS(W) is an H-map with (Resg X)% = 0.
Since H is normal, f maps X into S(W) ~ S(WH). Since S(W) ~ S(WH) is H-
homotopy equivalent to S(Wjy), where Wy is the orthogonal complement of V¥ in
V. Thus there exists an H-map f’ : Resg X — S(Vy) with S(Vg)# = (. Since
dim Vg < k, it follows that I (Resy X) < lg(X).

(2) Assume clg(X) = k. Let f : S(V) —» X, k = dimV, be a G-map realiz-
ing the colevel k. Then Resyf : S(ResyV) — ResyX is an H-map. This implies
cly (Resy X) > cla(X). O

Proposition 2.4. If X is a finite dimensional G-CW complex with finite orbit types,
then lg(X) < co.

Proof. There exists a fixed-point-free representation W such that dim X < dim S(W)#
for every H € Iso(X). Then we see

HYXH /WH, X>" )WH; ;1 (S(W))) =0

for 1 < k < dim X¥ /W H. By equivariant obstruction theory [6], one can construct a
G-map f: X — S(W). Thus Ig(X) < dim W. O

When X has infinitely many orbit types, lg(X) can be co. For example, let G =
S be a circle group and Hj, = C} a finite cyclic subgroup of order & > 1. Set
X =11, prime G/Hg, which is 1-dimensional G-CW complex with infinitely many orbit
types. Since a representation sphere S(W) has finitely many orbit types, see [3], and
H, are maximal isotropy subgroups in S!, there are no G-maps f : X — S(W). This
means Lg(X) =0 and lg(X) = oo by definition.

We next provide some results obtaining from Borsuk-Ulam type theorems. Let
G be an elementary abelian group C]’; of rank k or a k-dimensional torus T%. As
is well-known, the Borsuk-Ulam theorem holds for these G, i.e., if there exists a G-
map f:S(V) — S(W) between fixed-point-free representation spheres, then dim V' <
dim W holds. Also, if G acts freely on S(V') and S(W), then if there exists a G-map
f:8(V)— S(W), then dimV < dim W holds.

Proposition 2.5. Let G = Ck or T" and X a G-space. Then clg(X) < lg(X).
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Proof. Let f : S(V) - X, clg(X) = dimV and g : X — S(W), lg(X) = dim W
be G-maps realizing the equivariant colevel and level respectively. We have a G-map
go f:S(V)— S(W). By the Borsuk-Ulam theorem, we obtain clg(X) <lg(X). O

Assume that X is a G-representation sphere S(V'). Note that l¢(S(V)) < dimV
and clg(S(V)) > dim V, since the identity map id : S(V) — S(V) is a G-map.

Proposition 2.6. The following inequalities hold.
(1) le(S(VeW)) <la(S(V)) +1a(S(W)).
(2) cg(S(VaeW))>cda(S(V))+ca(S(W)).

Proof. (1) Let lg(S(V)) = k and Ig(S(W)) = 1. Let f: S(V) —» S(V'), k = dim V'
and g : S(W) — S(W'), | = dim W’ be G-maps realizing the levels k and . Then
fxg: S(VaeW)—= S(V'®W') is a G-map, where * means join. This implies

lc(SVaW)) <k+1=1c(S(V))+1c(S(W)).
(2) This is proved by a similar argument as (1). O

These facts lead us to the following result.

Proposition 2.7. The following statements hold.

(1) Let G = CZ’f or T*. For any fized-point-free G-representation V., it follows that
lag(S(V)) =clg(S(V)) =dim V.
(2) If G acts freely on S(W), then clg(S(W)) = dim W.

Proof. (1) Let f: S(V) — S(W) be a G-map. By the Borsuk-Ulam theorem, dim V' <
dim W. This means dim V' < [z (S(V)). As mentioned above, since dimV' > [z (S(V)),
it follows that Ig(S(V)) = dim V. Similarly one can see clg(S(V)) = dim V.

(2) Let f: S(V) — S(W) be a G-map. Since G acts freely on S(W), it follows that
G acts freely on S(V). Hence dimV < dim W holds by the Borsuk-Ulam theorem.
This implies clg(S(W)) = dim W. O

Remark. Even if G acts freely on S(V), it is not necessary to hold i¢(S(V)) = dim V.
Such an example can be found in Theorem 3.3 in the next section. Furthermore, if G is
neither C} nor T%, then there exists a G-representation V such that clg(S(V)) > dim V
by results of [12], [13].

At the end of this section, we mention a relation of the equivariant level and the

genus introduced by [1]. Let Sg be the set of closed proper subgroups of G. Let
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Iso(X) be the set of isotropy subgroups of X, where X is a G-space with X& = .
The Sg-genus 4G(X) of X is defined by the minimal number & such that there exists
a G-map f: X — «*_G/H;, H; € Sg, where * means join. Similarly the Iso(X)-
genus Y (X) of X is defined by the minimal number & such that there exists a G-map
f:X = +F G/H;, H; € Tso(X). Clearly 7g(X) < 7g(X). We summarize general

properties of genera of X. See [1] for more information.

Proposition 2.8. The following statements hold.
(1) If there exists a G-map f: X =Y, then 3¢(X) < (Y).
(2) If there exists a G-map f : X =Y andIso(X) = Iso(Y), then vo(X) < va(Y).
(3) Fe(S(V e W)) < 4c(S(V)) + 3c(S(W)) and va(S(V & W)) < 1a(S(V)) +
Ve (S(W)).

Proof. (1) Let 9¢(Y) = k and g : Y — **G/H; a G-map realizing k. Considering a
G-map go f: X — **G/H;, one sees g(X) < F(Y).

(2) Let 7¢(Y) =k and h: X — +*G/H;, H; € Iso(Y), a G-map realizing k. Since
H; € Iso(X), it follows that v (X) < v¢(Y).

(3) Let 6(S(V)) = k and Ag(S(W)) = 1. Let f: X — +¥_ | G/H; and g : X —
*é»:lG /K; be G-maps realizing k and [ respectively. Then there exists a G-map

Frg:S(V@W) = S(V)x S(W) = (i, G/H,) * (+_,G/K,).

This implies the first inequality. Assume H; € Iso(S(V)) and K; € Iso(S(W)). Since
Iso(S(V)) Ulso(S(W)) C Iso(S(V @ W)), the second inequality holds. O

Assume hereafter that G is a compact abelian Lie group and X = S(V) is a fixed-
point-free representation sphere. Decompose V' into V = @ gV (K), where V(K) is
the direct sum of irreducible sub-representations with kernel K. Let I(V') be the set
of K with V(K) # 0. Note that G/K is C, (p: prime) or S! for K € I(V) and
I(V) C Tso(S(V)). Set Ux = Infg,;Upyy for K € I(V), where Upyy is the standard
G/K-representation. Note that dimUg = 1 if |G/K| =2 and dim Ug = 2 otherwise.
Let Uy be another irreducible G-representation with kernel K. Then there exists
G-isovariant maps f : S(Ux) — S(Ug) and g : S(Ux) — S(Uk) by results of [9].
Therefore we may assume that V(K) is a direct sum of Ug in computing I (S(V)),
cg(S(V)), 4c(S(V)) and va(S(V)). We set I(V) = {K € I(V)|G/K = Cs} and
I'(V) = I(V) \ I(V). We show the following.

Theorem 2.9. Let G be abelian. Then 3g(S(V)) <lg(S(V)) < 27¢(S(V)).
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Proof. Let v¢(S(V)) =kand g: S(V) — *£_G/H;, H; € Iso(S(V)) a G-map realizing
Jc(S(V)) = k. For any H;, one can take K; € I(V) such that H; < K. Clearly there
exits a G-map j : ¥ G/H; — ¥ G/K; and there exists a G-map f; : G/K; —

S(Uk,) and hence one obtains a G-map
hi=*y fi: %1 G/Ki = S(@_, Uk,).

Thus we have a G-map hojog: S(V) — S(®F_, Uk,). Since dim Uk, < 2, it follows
that l(S(V)) < 2ya(S(V)).

We next show Ig(S(V)) > 3¢(S(V)). Let Ig(S(V)) =1 and f : S(V) — S(W),
dimW = [, a G-map realizing [¢(S(V)) = [. It it easy to see that there exists a
G-map fr : S(Ug) =2 S° - G/K = Cy for K € I,(W) and there exists a G-map
gr : S(Up) 2 8! - G/L *G/L for L € I'(W). Thus we obtain G-maps hx :
SW(K)) — «“~G/K for K € I(W) and hy : S(W(L)) — *"=(G/L = G/L) for
L € I'(W), where vg = dimW(K) and vy, = dim W (L)/2. Therefore we obtain a
G-map

h:SW)— *KEIg(W)(*wKG/K) * *LGI/(W)(*UL (G/L*G/L)).

Composing a G-map h with f, we obtain that

SV < Y wk+ Y 2vp=dimW =Ig(S(V)).
Kel(W) Ler’(w)

Remark. In the above proof, if I(W) C I(V), then v¢(S(V)) < la(S(V)) holds.

Example 2.10. Let G = S' and V = Upyy. Then 36(S(V)) = 7e(S(V)) = 1 and
lg(S(V)) = 2. In this case, lg(S(V)) = 27¢(S(V)) holds.

More generally, the following result holds.

Proposition 2.11. The following statements hold.

(1) If G =T%, then Ig(S(V)) = 29c(S(V)) = 27¢(S(V)) = dim V.
(2) If G =Cy, then Ig(S(V)) = 7c(S(V)) = 1c(S(V)) = dim V.

Proof. By Proposition 2.7, we already know that I5(S(V)) = dimV for G = T* and
Ck. By results of [1], it is known that 3¢(S(V)) = ya(S(V)) = (dimV)/2 when
G =T* and 5¢(S(V)) = 7a(S(V)) = dimV when G = CF. Thus the desired result
holds. ]
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3. The equivariant level and colevel of C,,-representation spheres

Let G be a cyclic group Cp, of order pg, where p, ¢ are distinct primes. In this
section, we compute the equivariant level and colevel of G-representation spheres in
several cases. We set V =V (1) @ V(Cp) @ V(Cy). Set Uy, = Infg/ck Upy for k=1,p
or g, where Uyyy is the standard irreducible C),/,-representation. Note that if p and
q are odd primes, then dim Uy = 2, and if ¢ = 2, then dimU, = 2 for k£ = 1, 2, and
dim U, = 1. We may assume that V' (C}) is a direct sum of copies of Uy, for k =1, p, ¢
as mentioned before.

We here consider the case where p and ¢ are distinct primes. We discuss the results

in several cases.

Theorem 3.1. Let G = Cpq, where p and q are distinct primes with p > q and V a
fized-point-free G-representation. Then

(1) Ig(S(V)) > dim V(C,y) + dim V(C,) = dim V + dim V.

(2) If dim VS > 2 and dim Ve # 0, then

1c(S(V)) = dim V(C,) 4+ dim V(C,) = dim V + dim V.
(3) If dim VS > 2 and dim VS # 0, then clg(S(V)) = co.

Proof. (1) Let f: S(V) — S(W) be a G-map. Applying the Borsuk-Ulam theorem to
a Cp-map fC : S(V)% = S(V(C,)) — S(W)% = S(W(C,)), one sees dim V(C,) <
dim W(Cy). Similarly one sees dim V(C)) < dim W (C,). Since dimW > dim V(C)) &
V(Cy), it follows that i¢(S(V)) > dim V(C,) + dim V(Cy).

(2) Since Cp,/Cy is of odd order, it follows that dim V(Cy) > 2. Set W =V (C),,) &
V(Cy) and consider the identity map

i:S(V(Cp) @ V(Cy)) = S(V(Cp) @ V(Cy)).

By an obstruction theoretic argument of [15] or [10], ¢ is extended to a G-map g :
S(V)—= S(V(Cp) & V(Cy)). Therefore I(S(V)) < dim V(Cp) 4+ dim V(C,). Therefore
(2) holds.

(3) Similarly there exits a G-map g, : S(nUs & V(Cp) & V(Cy)) — S(V) for any
n > 1. This implies that clg(S(V)) = oo. O

Remark. By results of [2], if G is not a p-toral group, then there exists a G-representation
V such that clg(S(V)) = oo, and if G is a finite p-group, then clg(S(V)) < oc.
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Theorem 3.2. Let G = C)q, where p and q are distinct primes with p > q and V
a fized-point-free G-representation. Assume that dimV (Cp,) = 0 or dimV(Cy) = 0.
Then clg(S(V)) = dim V.

Proof. We may suppose V(Cy) =0, hence V =V (1) @ V(Cp). Let f: S(W) = S(V)
be a G-map. By the Borsuk-Ulam theorem, one has dim W (C,) < dimV(C,) and
dim W (Cy) = 0. Thus W = W(1)®W(C,). Since C, acts freely on S(W) and S(V), it
follows from the Borsuk-Ulam theorem that dim W < dim V. Thus clg(S(V)) < dim V.
On the other hand, clearly clg(S(V)) > dimV and therefore clg(S(V)) =dimV. O

Theorem 3.3. Let G = Cpq, where p and q are distinct primes with p > q and V a
fized-point-free G-representation.
(1) Suppose that V(Cp) =0, V(Cy) # 0. Then
(a) If V(1) # 0 and q # 2, then lg(S(V)) = dim V(C,) + 2.
(b) If V(1) # 0 and g = 2, then dimV (Cy) +1 <l (S(V)) < dimV(C,) + 2.
(c) If V(1) =0, then lg(S(V)) =dimV(Cy) = dim V.
(2) Suppose that V(Cp) # 0, V(Cy) =0. Then
(a) If V(1) # 0 and dimV(C}) > 2, then I¢(S(V)) = dim V(C,) + 2.
(b) If V(1) # 0 and dimV(C,) = 1 (this happens only when ¢ = 2), then
3<ia(S(V)) <4
(c) If V(1) =0, then lg(S(V)) = dimV(Cp) = dim V.
(3) Suppose that V(Cp) =V (Cq) = 0. Then
(a) If q is an odd prime and dimV = 2. then lq(S(V)) =
(b) If q is an odd prime and dimV > 4, then lg(S(V))
(c) If g =2, then 3 <lg(S(V)) < 4.

2.
4.

Proof. (1) Suppose that V =V (1) & V(Cy). Let f: S(V) = S(W) be a G-map. By
the Borsuk-Ulam theorem, one has dim V' (C,) < dim W (C,).

Set U, = U, for ¢ is an odd prime, and U, = 2U, for ¢ = 2. Thus dim U}, = 2. Set
W' = U, ®V(C,). Then there exits a G-map g : S(V) — S(W') as before. Hence
Ic(S(V)) < dimW’' = dimV(C,) + 2. By Theorem 3.1, dim V(C,) < Ig(S(V)). If
lc(S(V)) = dimV(Cy), then there exists a G-map f : S(V) — S(V(Cy)), but this
contradicts the Borsuk-Ulam theorem for a C,-map. Therefore the desired results (a)
and (b) hold.

(1-c) Since V = V(Cp), it follows from Theorem 2.2 that i (V) < I, (V) = dim V.
On the other hand, {¢(V) > dim V' and therefore (c¢) holds.
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(2) The proof is similar with (1).

(3) By a similar argument, one sees that lg(S(V)) < 4. If Ig(S(V) < 2, then
there are no G-maps when dim V' > 4 by the Borsuk-Ulam theorem. Therefore 3 <
lg(S(V)) < 4. O

Remark. Let G = Cyp, where p is an odd prime. By a result of [11], if V' = 2Uj, then
la(S(V)) = 3.

In almost cases, we have determined the equivariant level and colevel for Cp,. The
remaining cases are (1-b), (2-b) and (3-¢) in Theorem 3.3. We would like to study
these cases in future research.

Finally we discuss the equivariant level when p = ¢. In this case, this is essentially
studied by [14] and [8]. We restate their results in our context. Set

Lim_l = S(mUy)/C,,
where Uj is the standard free Cpz-representation. If p = 2, then L3™ " is the (2m —1)-
dimensional real projective space with the standard free Cy-action, and if p is an odd

prime, then L2™~! is the (2m — 1)-dimensional lens space with the standard free C-

action.
Lemma 3.4. Let G = Cp2. Then lg(S(mUy)) = lcp(Lszl).

Proof. In the case of p = 2, i.e., G = C4. We may set V = V(1) & V(C3). Let
f: L3t = S(RL) be a Co-map realizing I, (L2™ ™) = I, where RL is the nontrivial
irreducible Cs-representation. Let ¢ : Cy — C5 be the projection and

I S(mU1) — S(mUl)/Cz = Lgmil
be the covering map which is a g-equivariant map. Also the identity map
is a g-equivariant map. Then f :=i Yo fom: S(mU;) — S(IUs) is a G-map over f.
Thus lg(S(mUy)) <1 = lc,(RP?™~1).

Conversely, let f : S(mUy) — S(W), dim W = [, be a G-map realizing i¢(S(V)) = I.
There exists a G-map j : S(Uy) — S(Uz @ Us), where Uy = Infg/CQRE. Hence we may
suppose that W = [Uy. Then f : L3 = S(mU;)/Cy — S(IU3)/Cy = S(IR.) is a
Cy-map. Thus lo, (L™ ') <1 =1g(S(V)). Therefore, (1) holds.

When p is an odd prime, a similar argument leads to the formula. We omit the
detail. O



40 Tkumitsu NAGASAKI

The level l¢, (L3™ ") has been computed by [14] and ¢, (L2™~1), p: odd prime, by
[8]. By Lemma 3.4, we obtain the following.

Proposition 3.5. The following hold.

m+1 m=0,2 mod8
(1) lg,(S(mU1)=<{m+2 m=1,3,4,5,7 mod8
m-+3 m =6 mod8.
(2) Ifp is an odd prime, then
(a) 2((m = 2)/p) +2 <lc,, (S(mU1)) < 2((m = 2)/p) + 4 for m # 2 modp,
where (x) denotes the smallest integer more than or equal to x.
(b) lc , (S(mUy)) =2(m —2)/p+4 for m =2 modp.
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