The Borsuk-Ulam Inequality For Representations

The Borsuk-Ulam Inequality For Representations

Tkumitsu NAGASAKI Y

Abstract. For any (virtual) representation « = W — V € RO(G) of a finite
group G, an integer-valued function d is defined by d(H) = dima — dim o’ for
H < G. In this paper, we shall investigate a question whether the Borsuk-Ulam
inequality d(G) > 0 holds when d(C) > 0 for every cyclic subgroup C of G, raised
by research of the isovariant Borsuk-Ulam theorem, and we then determine finite
abelian groups having such property for every Cg-pair and finally provide a variant
of the Borsuk-Ulam theorem.

1. Introduction

By Wasserman’s work [6], we know that the isovariant Borsuk-Ulam theorem holds
for a finite solvable group G; namely, if there is a G-isovariant map f : V' — W between

G-representations, then the Borsuk-Ulam inequality
dimV — dim VY < dim W — dim W¢
or equivalently
dima —dima® >0 (a=W -V € RO(G))

holds for solvable G.

Let S(G) be the set of subgroups of G. For a given pair (V, W) of G-representations,
we define an integer-valued function d on S(G) by

d(H) = dim W — dimW# —dimV + dim V#
=dima —dimaof (=W -V € RO(G), H € 5(Q@)).

Let F be a family of subgroups of G. We call (V, W) an F-pair if d(H) > 0 for every
H € F. We here consider the family of cyclic subgroups of G, denoted by Cs. We also
set C& = Ce ~ {1}, where 1 denotes the unit element of G. In this paper, we shall

investigate a question whether the Borsuk-Ulam inequality d(G) > 0 holds for every

Cg-pair. One of the main results is the following.
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Theorem 1.1. Let G be a finite abelian group. The Borsuk-Ulam inequality
dimV — dim VY < dim W — dim W¢

holds for every Cq-pair (V,W) if and only if G is a cyclic group C,, or an elementary
abelian p-group (Cp)~.

The proof of the theorem is given in sections 2 and 3. In section 4, we shall provide
several nonabelian examples that the Borsuk-Ulam inequality holds for every Cg-pair

and we also show a variant of the Borsuk-Ulam theorem:

Theorem 1.2. Let G be a finite group consisting of prime order elements and the
unit element. For G-representations V' and W, if, for each C € Cg, there is a C-map
fo: S(V)N S(V)C — S(W) ~\ S(W)C, then the Borsuk-Ulam inequality

dimV —dim VY < dim W — dim W¢
holds.

Here if V =V, then fc is understood to be a C-map on the empty set. The finite
groups satisfying the assumption in Theorem 1.2 are classified by [2]. An elementary
abelian p-group (Cp)¥, a metacyclic group Z, , of order pg, where p, q are primes and

q|p—1, and the alternating groups A4, As are examples of such groups.

2. Algebraic description of the Borsuk-Ulam inequality

As mentioned in [6], the Borsuk-Ulam inequality is described by characters of rep-
resentations. Let x, be a (virtual) character of « = W — V € RO(G). Then
dima = x4(1) and

1
dma® = L 559
H| =
for a subgroup H of G. We define a function h by

h(H) = [H|d(H) = ) (Xa(1) = Xa(9)),
geEH
and a function k by
E(C) = > (Xa(l) = Xal9))
gec*
for any cyclic subgroup C, where C* is the set of generators of C. Then h is described

as

h(H) = Y k(C).

ceCuy
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In particular,

h(C)= > k(D)
DeCe
for any C' € C. Using the Mobius inversion on the subgroup lattice (see [1]), we obtain

k(D)= Y u(C,D)n(C).

CeCp

Therefore the following formula is obtained as proved in [5].

Proposition 2.1 ([5]).

h(G)

S 3 WE D)

DeCg CeCp

> > u(C,D)| hC).

CeCs \C<DeCqg

Note that k(1) = h(1) = 0. By setting
m(C)= Y uC, D)
C<DeCq
for C € Cq, h(G) is described as

cecl

Since h(H) = |H|d(H) by definition, we obtain

Corollary 2.2.

We now prove a half of Theorem 1.1.

Proposition 2.3. If G is a cyclic group C,, or an elementary abelian p-group (Cp)*,

then the Borsuk-Ulam inequality holds for every Cg-pair.

Proof. When G = C},, this is trivial by the definition of a Cs-pair. We next consider
the case of G = (C,)*. Suppose that « = W — V and (V,W) is a Cg-pair; namely,
h(C) > 0 holds for every C € Cg. For any nontrivial cyclic subgroup C of G, a cyclic
subgroup D containing C' is only C itself and therefore m(C) = p(C,C) = 1. Thus
hG) = X ceco, M(C) = 0 and this implies that d(G) = dima — dim a% > 0. O
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3. Proof of Theorem 1.1

In this section, we prove another half of Theorem 1.1 after preparing some lemmas.

Let @ be a quotient subgroup of G and let 7 : G — @ be the projection. Through
the projection m, any @Q-representation V is thought of as a G-representation, which is
called the inflation of V and denoted by V or Inng.

Lemma 3.1. If (V,W) is a Cg-pair, then (\7,%) is a Cg-pair.

Proof. For any cyclic group C of G, set C = 7(C) € Cg. For « = W —V and
& =W —V, it follows that dim & — dim &° = dim a— € > 0. This shows that (V, W)
is a Cg-pair. O

Lemma 3.2. If the Borsuk-Ulam inequality holds for every Cq-pair, then it holds for
every Cq-pair.

Proof. For any Cgo-pair (V,W), the inflated pair (17, W) is a Cg-pair by Lemma 3.1.
Therefore dim & — dim a® > 0 by assumption. Thus

d(Q) = dim o — dim o® = dim& — dima“ > 0.
This means that the Borsuk-Ulam inequality holds for (V, W). |

If an abelian group G is neither cyclic nor elementary abelian, then there exists a
subgroup H such that G/H 2 (Cp)? x C,, where p, q are distinct primes, or G/H =
Cp x Cp2. By Lemma 3.2, the problem is reduced to the cases of (Cp)? x Cy and
Cp X sz.

Let us first recall representations of a finite abelian group. Taking a subgroup K
of G such that G/K is cyclic, one can obtain a complex 1-dimensional representation
Upg with kernel K. Indeed, Uy is constructed as follows. Take a G/K-representation
U = C on which a generator g of G/K acts by gz = (z, where z € C and ( is a
|G/K|-th primitive root of unity. Then Uk may be taken as the inflation U of U. The

following is straightforward.

2 if H<K

Lemma 3.3. dimU}¥ = {O FOHZK
i .

3.1. The case of G = (C},)? x C,. There are p+ 1 subgroups H; (0 <i < p) of (Cp)?
such that (C,)%/H; = C,. Note also that G/H; = C,, and

C& = {H;,Co, H; x Cq | 0 < i < p}.



The Borsuk-Ulam Inequality For Representations 25

Consider G-representations:
V =Unyxc, ® - ®Un,xc, ®Uc,)2,
W=Ug, ®---®Upg,.

P

N

QX g : prC'q

HO } Cq

FIGURE 1. The subgroup lattice of (C,)? x C,

>2><Cq

Q

\

It is easily seen that
dimV =2(p+2), dimW =2(p+1),
dim VT =4, dimW# =2,
dim VH* =2, dim WH % =,
dim V% =2(p+1), dimW% =0.
Thus we see
d(1) =d(H;) =d(H; x Cq) =0 and d(Cy) = 2p.

This implies that (V,W) is a Cg-pair. On the other hand, since d(G) = —2 < 0, the
Borsuk-Ulam inequality does not hold.

3.2. The case of G = C}, x C}2. Let a and b be generators of €}, and C),> respectively.
The nontrivial cyclic subgroups of G are the following;:

e H = (a), isomorphic to Cj,

o K; = (a'?), 0 <i <p—1, isomorphic to Cp,

e L; = (a'b), 0 <i < p— 1, isomorphic to Cpe
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Setting M = (a,b”), we define G-representations V and W to be
V=UoUL @"'@ULp_l e+ 1)Uy,
W =2Ug ©2Uk, ® -+ ©2Uk,_,.

Cp X Cp2

NN
NP

FIGURE 2. The subgroup lattice of C}, x Cp2

Noting obvious inclusions

Ko<L, <G (0<i<p-1),
H<M <G,

we see

Therefore (V, W) is a Cg-pair; however, since d(G) = —2 < 0, the Borsuk-Ulam in-
equality does not hold. Thus the proof of Theorem 1.1 is completed.

4. Nonabelian examples

A similar question can be considered in the case of nonabelian finite groups. Unfor-

tunately we do not completely solve it, but we can provide some examples.
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Proposition 4.1. Let G be a dihedral group D,, of order 2n. If (V,W) is a Cg-pair,
then the Borsuk-Ulam inequality

dimV —dim V% < dim W — dim W¢
holds.

Proof. Recall the formula in Corollary 2.2:

1£CeCq | ‘
It suffices to show that m(C) > 0 for C' € CZ. Set
D, = {a,b|la" =b*=1,b"tab=a""').
The cyclic subgroups of D,, are as follows:
Cq = (") for d|n, Ej = (a*b) = C,for 0 <k <n.

Fix any Cy (1 # d|n). Since any cyclic subgroup including Cy is included in a unique
maximal cyclic subgroup C,, it follows that m(Cy) = 0 if 1 # d|n and m(C,) = 1.
Since a cyclic subgroup including Ej is only Fj itself, it follows that m(Ey) = 1.
Therefore we have d(G) > 0. O

Proposition 4.2. Let G = PSL(2,q), where q is a power of a prime p. If (V,W) is a
Cg-pair, then the Borsuk-Ulam inequality

dimV —dim V% < dim W — dim W¢
holds.

Proof. A similar argument in [5] shows that m(C) > 0 for any nontrivial cyclic sub-
group C of G. See [5] for the details. O

Next consider a finite groups consisting of prime order elements and the unit element.
Such groups are classified by [2]. We call them groups of prime order elements, and
an elementary abelian group (C’p)k, a metacyclic group Z, 4, where p, ¢ are primes
and ¢ |p— 1, and the alternating groups A4, A5 are examples of groups of prime order

elements.

Proposition 4.3. Let G be a group of prime order elements. If (V,W) is a Cg-pair,
then the Borsuk-Ulam inequality holds.
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Proof. In this case, clearly m(C) = 1 for any nontrivial cyclic subgroup C, hence
d(G) > 0. |

On the other hand, the quaternion group (Js is a nonabelian counterexample. Set
Qs = {1, +i, 475, +k} as a subset of quaternions H. All proper subgroups are normal
and cyclic: Dy = (i), Da = (j), D3 = (k), Co = (—1) and 1.

FIGURE 3. The subgroup lattice of Qg

The quaternion group Qg has four 1-dimensional irreducible representations Uy, Uy,
Us, Uz, where Uy denotes the trivial representation and KerU; = D; for i = 1,2, 3.
There is a one 4-dimensional (orthogonal) representation H with the standard Qs-
action. Let W = H and V = 2U; @ 2U; @ 2Us. Then d(C2) = 4, d(D;) = 0 for
1 =1,2,3, whereas d(G) = -2 < 0.

Finally, we show Theorem 1.2.

Proof of Theorem 1.2. For a G-representation V and C' € Cg, we denote by V — V¢
the complement of V¢ in V as a C-representation and by S(V — V) the unit sphere
of V— V. Since S(V) ~\ S(V)® is C-homotopy equivalent to S(V — V), it turns out
that there is a C-map fo : S(V — V) — S(W — WC). Since any C € C% is of prime
order, C acts freely on S(V — V) and S(W — W¢). The Borsuk-Ulam theorem for
Cp-maps (see [3], for example) asserts that
dim S(V — V%) < dim S(W — W©).
Therefore we obtain that (V, W) is a Cg-pair and thus the Borsuk-Ulam inequality
dimV — dim VY < dim W — dim W¢
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holds by Proposition 4.3. (]

As a finial remark, we notice the following fact. If there is a G-isovariant map
f85(V) = 5(W),
then there is a C-map
fo i SV~ S(V)E = SW) < S(W)°
for every C € Cg; however, the converse is not correct; in fact, even a G-map f :
S(V) — S(W) does not exist in general. For example, let G = C}, x Cp,. Then CZ
consists of p + 1 cyclic subgroups of order p, say Hy, Ha,...,Hy (N =p+1 > 3). Set
V =2Ux, @ U, ®Un,, W =Upn, ®2UH, ®2Ug,.
Then H; acts freely on S(V — VHi) and S(W — W), and
dim S(V — VHi) < dim S(W — W),
Hence one can easily construct an H;-map
Fa, : SOV = V) = S(W — Wi
for every H; € C%, 1 <i < N. Extending fu,, one has an H;-map
fr,  S(V)~ S(V)Hi — (W)~ S(W)H:.
On the other hand, there are no G-maps from S(V) to S(W). In fact, if there would
be a G-map f: S(V) — S(W), then, by H;-fixing, a Cp-map
2 8(2Um,) = S(V) — S(W)™ = S(Un,)
would be obtained; however, this contradicts the Borsuk-Ulam theorem which asserts

that dim S(V)r < dim S(W)H1. (See for example [4] for the Borsuk-Ulam theorem
for (Cp)*-maps.)
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