The Borsuk-Ulam Inequality For Representations

Ikumitsu NAGASAKI ${ }^{1)}$

Abstract

For any (virtual) representation $\alpha=W-V \in R O(G)$ of a finite group G, an integer-valued function d is defined by $d(H)=\operatorname{dim} \alpha-\operatorname{dim} \alpha^{H}$ for $H \leq G$. In this paper, we shall investigate a question whether the Borsuk-Ulam inequality $d(G) \geq 0$ holds when $d(C) \geq 0$ for every cyclic subgroup C of G, raised by research of the isovariant Borsuk-Ulam theorem, and we then determine finite abelian groups having such property for every \mathcal{C}_{G}-pair and finally provide a variant of the Borsuk-Ulam theorem.

1. Introduction

By Wasserman's work [6], we know that the isovariant Borsuk-Ulam theorem holds for a finite solvable group G; namely, if there is a G-isovariant map $f: V \rightarrow W$ between G-representations, then the Borsuk-Ulam inequality

$$
\operatorname{dim} V-\operatorname{dim} V^{G} \leq \operatorname{dim} W-\operatorname{dim} W^{G}
$$

or equivalently

$$
\operatorname{dim} \alpha-\operatorname{dim} \alpha^{G} \geq 0 \quad(\alpha=W-V \in R O(G))
$$

holds for solvable G.
Let $S(G)$ be the set of subgroups of G. For a given pair (V, W) of G-representations, we define an integer-valued function d on $S(G)$ by

$$
\begin{aligned}
d(H) & =\operatorname{dim} W-\operatorname{dim} W^{H}-\operatorname{dim} V+\operatorname{dim} V^{H} \\
& =\operatorname{dim} \alpha-\operatorname{dim} \alpha^{H} \quad(\alpha=W-V \in R O(G), H \in S(G)) .
\end{aligned}
$$

Let \mathcal{F} be a family of subgroups of G. We call (V, W) an \mathcal{F}-pair if $d(H) \geq 0$ for every $H \in \mathcal{F}$. We here consider the family of cyclic subgroups of G, denoted by \mathcal{C}_{G}. We also set $\mathcal{C}_{G}^{0}=\mathcal{C}_{G} \backslash\{1\}$, where 1 denotes the unit element of G. In this paper, we shall investigate a question whether the Borsuk-Ulam inequality $d(G) \geq 0$ holds for every \mathcal{C}_{G}-pair. One of the main results is the following.

[^0]2010 Mathematics Subject Classification. Primary 57S17; Secondary 55M20.

Theorem 1.1. Let G be a finite abelian group. The Borsuk-Ulam inequality

$$
\operatorname{dim} V-\operatorname{dim} V^{G} \leq \operatorname{dim} W-\operatorname{dim} W^{G}
$$

holds for every \mathcal{C}_{G}-pair (V, W) if and only if G is a cyclic group C_{n} or an elementary abelian p-group $\left(C_{p}\right)^{k}$.

The proof of the theorem is given in sections 2 and 3. In section 4, we shall provide several nonabelian examples that the Borsuk-Ulam inequality holds for every \mathcal{C}_{G}-pair and we also show a variant of the Borsuk-Ulam theorem:

Theorem 1.2. Let G be a finite group consisting of prime order elements and the unit element. For G-representations V and W, if, for each $C \in \mathcal{C}_{G}$, there is a C-map $f_{C}: S(V) \backslash S(V)^{C} \rightarrow S(W) \backslash S(W)^{C}$, then the Borsuk-Ulam inequality

$$
\operatorname{dim} V-\operatorname{dim} V^{G} \leq \operatorname{dim} W-\operatorname{dim} W^{G}
$$

holds.
Here if $V=V^{C}$, then f_{C} is understood to be a C-map on the empty set. The finite groups satisfying the assumption in Theorem 1.2 are classified by [2]. An elementary abelian p-group $\left(C_{p}\right)^{k}$, a metacyclic group $Z_{p, q}$ of order $p q$, where p, q are primes and $q \mid p-1$, and the alternating groups A_{4}, A_{5} are examples of such groups.

2. Algebraic description of the Borsuk-Ulam inequality

As mentioned in [6], the Borsuk-Ulam inequality is described by characters of representations. Let χ_{α} be a (virtual) character of $\alpha=W-V \in R O(G)$. Then $\operatorname{dim} \alpha=\chi_{\alpha}(1)$ and

$$
\operatorname{dim} \alpha^{H}=\frac{1}{|H|} \sum_{g \in H} \chi_{\alpha}(g)
$$

for a subgroup H of G. We define a function h by

$$
h(H)=|H| d(H)=\sum_{g \in H}\left(\chi_{\alpha}(1)-\chi_{\alpha}(g)\right),
$$

and a function k by

$$
k(C)=\sum_{g \in C^{*}}\left(\chi_{\alpha}(1)-\chi_{\alpha}(g)\right)
$$

for any cyclic subgroup C, where C^{*} is the set of generators of C. Then h is described as

$$
h(H)=\sum_{C \in \mathcal{C}_{H}} k(C) .
$$

In particular,

$$
h(C)=\sum_{D \in \mathcal{C}_{C}} k(D)
$$

for any $C \in \mathcal{C}_{G}$. Using the Möbius inversion on the subgroup lattice (see [1]), we obtain

$$
k(D)=\sum_{C \in \mathcal{C}_{D}} \mu(C, D) h(C) .
$$

Therefore the following formula is obtained as proved in [5].
Proposition 2.1 ([5]).

$$
\begin{aligned}
h(G) & =\sum_{D \in \mathcal{C}_{G}} \sum_{C \in \mathcal{C}_{D}} \mu(C, D) h(C) \\
& =\sum_{C \in \mathcal{C}_{G}}\left(\sum_{C \leq D \in \mathcal{C}_{G}} \mu(C, D)\right) h(C) .
\end{aligned}
$$

Note that $k(1)=h(1)=0$. By setting

$$
m(C)=\sum_{C \leq D \in \mathcal{C}_{G}} \mu(C, D)
$$

for $C \in \mathcal{C}_{G}, h(G)$ is described as

$$
h(G)=\sum_{C \in \mathcal{C}_{G}^{0}} m(C) h(C) .
$$

Since $h(H)=|H| d(H)$ by definition, we obtain

Corollary 2.2.

$$
d(G)=\sum_{C \in \mathcal{C}_{G}^{0}} \frac{|C|}{|G|} m(C) d(C) .
$$

We now prove a half of Theorem 1.1.
Proposition 2.3. If G is a cyclic group C_{n} or an elementary abelian p-group $\left(C_{p}\right)^{k}$, then the Borsuk-Ulam inequality holds for every \mathcal{C}_{G}-pair.

Proof. When $G=C_{n}$, this is trivial by the definition of a \mathcal{C}_{G}-pair. We next consider the case of $G=\left(C_{p}\right)^{k}$. Suppose that $\alpha=W-V$ and (V, W) is a \mathcal{C}_{G}-pair; namely, $h(C) \geq 0$ holds for every $C \in \mathcal{C}_{G}$. For any nontrivial cyclic subgroup C of G, a cyclic subgroup D containing C is only C itself and therefore $m(C)=\mu(C, C)=1$. Thus $h(G)=\sum_{C \in \mathcal{C}_{G}^{0}} h(C) \geq 0$ and this implies that $d(G)=\operatorname{dim} \alpha-\operatorname{dim} \alpha^{G} \geq 0$.

3. Proof of Theorem 1.1

In this section, we prove another half of Theorem 1.1 after preparing some lemmas.
Let Q be a quotient subgroup of G and let $\pi: G \rightarrow Q$ be the projection. Through the projection π, any Q-representation V is thought of as a G-representation, which is called the inflation of V and denoted by \widetilde{V} or $\operatorname{Inf}_{Q}^{G} V$.

Lemma 3.1. If (V, W) is a \mathcal{C}_{Q}-pair, then $(\widetilde{V}, \widetilde{W})$ is a \mathcal{C}_{G}-pair.
Proof. For any cyclic group C of G, set $\bar{C}=\pi(C) \in \mathcal{C}_{Q}$. For $\alpha=W-V$ and $\widetilde{\alpha}=\widetilde{W}-\widetilde{V}$, it follows that $\operatorname{dim} \widetilde{\alpha}-\operatorname{dim} \widetilde{\alpha}^{C}=\operatorname{dim} \alpha-\alpha^{\bar{C}} \geq 0$. This shows that $(\widetilde{V}, \widetilde{W})$ is a \mathcal{C}_{G}-pair.

Lemma 3.2. If the Borsuk-Ulam inequality holds for every \mathcal{C}_{G}-pair, then it holds for every \mathcal{C}_{Q}-pair.

Proof. For any \mathcal{C}_{Q}-pair (V, W), the inflated pair $(\widetilde{V}, \widetilde{W})$ is a \mathcal{C}_{G}-pair by Lemma 3.1. Therefore $\operatorname{dim} \widetilde{\alpha}-\operatorname{dim} \widetilde{\alpha}^{G} \geq 0$ by assumption. Thus

$$
d(Q)=\operatorname{dim} \alpha-\operatorname{dim} \alpha^{Q}=\operatorname{dim} \widetilde{\alpha}-\operatorname{dim} \widetilde{\alpha}^{G} \geq 0
$$

This means that the Borsuk-Ulam inequality holds for (V, W).
If an abelian group G is neither cyclic nor elementary abelian, then there exists a subgroup H such that $G / H \cong\left(C_{p}\right)^{2} \times C_{q}$, where p, q are distinct primes, or $G / H \cong$ $C_{p} \times C_{p^{2}}$. By Lemma 3.2, the problem is reduced to the cases of $\left(C_{p}\right)^{2} \times C_{q}$ and $C_{p} \times C_{p^{2}}$.

Let us first recall representations of a finite abelian group. Taking a subgroup K of G such that G / K is cyclic, one can obtain a complex 1-dimensional representation U_{H} with kernel K. Indeed, U_{H} is constructed as follows. Take a G / K-representation $U=\mathbb{C}$ on which a generator g of G / K acts by $g z=\zeta z$, where $z \in \mathbb{C}$ and ζ is a $|G / K|$-th primitive root of unity. Then U_{K} may be taken as the inflation \widetilde{U} of U. The following is straightforward.

Lemma 3.3. $\operatorname{dim} U_{K}^{H}= \begin{cases}2 & \text { if } H \leq K \\ 0 & \text { if } H \not 又 K .\end{cases}$
3.1. The case of $G=\left(C_{p}\right)^{2} \times C_{q}$. There are $p+1$ subgroups $H_{i}(0 \leq i \leq p)$ of $\left(C_{p}\right)^{2}$ such that $\left(C_{p}\right)^{2} / H_{i} \cong C_{p}$. Note also that $G / H_{i} \cong C_{p q}$ and

$$
\mathcal{C}_{G}^{0}=\left\{H_{i}, C_{q}, H_{i} \times C_{q} \mid 0 \leq i \leq p\right\} .
$$

Consider G-representations:

$$
\begin{aligned}
V & =U_{H_{0} \times C_{q}} \oplus \cdots \oplus U_{H_{p} \times C_{q}} \oplus U_{\left(C_{p}\right)^{2}}, \\
W & =U_{H_{0}} \oplus \cdots \oplus U_{H_{p}} .
\end{aligned}
$$

Figure 1. The subgroup lattice of $\left(C_{p}\right)^{2} \times C_{q}$

It is easily seen that

$$
\begin{aligned}
& \operatorname{dim} V=2(p+2), \quad \operatorname{dim} W=2(p+1) \\
& \operatorname{dim} V^{H_{i}}=4, \quad \operatorname{dim} W^{H_{i}}=2 \\
& \operatorname{dim} V^{H_{i} \times C_{q}}=2, \quad \operatorname{dim} W^{H_{i} \times C_{q}}=0 \\
& \operatorname{dim} V^{C_{q}}=2(p+1), \quad \operatorname{dim} W^{C_{q}}=0
\end{aligned}
$$

Thus we see

$$
d(1)=d\left(H_{i}\right)=d\left(H_{i} \times C_{q}\right)=0 \text { and } d\left(C_{q}\right)=2 p .
$$

This implies that (V, W) is a \mathcal{C}_{G}-pair. On the other hand, since $d(G)=-2<0$, the Borsuk-Ulam inequality does not hold.
3.2. The case of $G=C_{p} \times C_{p^{2}}$. Let a and b be generators of C_{p} and $C_{p^{2}}$ respectively. The nontrivial cyclic subgroups of G are the following:

- $H=\langle a\rangle$, isomorphic to C_{p},
- $K_{i}=\left\langle a^{i} b^{p}\right\rangle, 0 \leq i \leq p-1$, isomorphic to C_{p},
- $L_{i}=\left\langle a^{i} b\right\rangle, 0 \leq i \leq p-1$, isomorphic to $C_{p^{2}}$.

Setting $M=\left\langle a, b^{p}\right\rangle$, we define G-representations V and W to be

$$
\begin{aligned}
V & =U_{L_{0}} \oplus U_{L_{1}} \oplus \cdots \oplus U_{L_{p-1}} \oplus(p+1) U_{M} \\
W & =2 U_{H} \oplus 2 U_{K_{1}} \oplus \cdots \oplus 2 U_{K_{p-1}}
\end{aligned}
$$

Figure 2. The subgroup lattice of $C_{p} \times C_{p^{2}}$

Noting obvious inclusions

$$
\begin{aligned}
& K_{0} \leq L_{i} \leq G \quad(0 \leq i \leq p-1) \\
& K_{i} \leq M \leq G \quad(1 \leq i \leq p-1) \\
& H \leq M \leq G
\end{aligned}
$$

we see

$$
\begin{aligned}
& d\left(L_{i}\right)=0 \quad(0 \leq i \leq p-1) \\
& d\left(K_{0}\right)=4 p \\
& d\left(K_{i}\right)=2(p-2) \quad(1 \leq i \leq p-1), \\
& d(H)=2(p-2)
\end{aligned}
$$

Therefore (V, W) is a \mathcal{C}_{G}-pair; however, since $d(G)=-2<0$, the Borsuk-Ulam inequality does not hold. Thus the proof of Theorem 1.1 is completed.

4. Nonabelian examples

A similar question can be considered in the case of nonabelian finite groups. Unfortunately we do not completely solve it, but we can provide some examples.

Proposition 4.1. Let G be a dihedral group D_{n} of order $2 n$. If (V, W) is a \mathcal{C}_{G}-pair, then the Borsuk-Ulam inequality

$$
\operatorname{dim} V-\operatorname{dim} V^{G} \leq \operatorname{dim} W-\operatorname{dim} W^{G}
$$

holds.
Proof. Recall the formula in Corollary 2.2:

$$
d(G)=\sum_{1 \neq C \in \mathcal{C}_{G}} \frac{|C|}{|G|} m(C) d(C) .
$$

It suffices to show that $m(C) \geq 0$ for $C \in \mathcal{C}_{G}^{0}$. Set

$$
D_{n}=\left\langle a, b \mid a^{n}=b^{2}=1, b^{-1} a b=a^{-1}\right\rangle .
$$

The cyclic subgroups of D_{n} are as follows:

$$
C_{d}=\left\langle a^{n / d}\right\rangle \text { for } d \mid n, \quad E_{k}=\left\langle a^{k} b\right\rangle \cong C_{2} \text { for } 0 \leq k \leq n .
$$

Fix any $C_{d}(1 \neq d \mid n)$. Since any cyclic subgroup including C_{d} is included in a unique maximal cyclic subgroup C_{n}, it follows that $m\left(C_{d}\right)=0$ if $1 \neq d \mid n$ and $m\left(C_{n}\right)=1$. Since a cyclic subgroup including E_{k} is only E_{k} itself, it follows that $m\left(E_{k}\right)=1$. Therefore we have $d(G) \geq 0$.

Proposition 4.2. Let $G=\operatorname{PSL}(2, q)$, where q is a power of a prime p. If (V, W) is a \mathcal{C}_{G}-pair, then the Borsuk-Ulam inequality

$$
\operatorname{dim} V-\operatorname{dim} V^{G} \leq \operatorname{dim} W-\operatorname{dim} W^{G}
$$

holds.
Proof. A similar argument in [5] shows that $m(C) \geq 0$ for any nontrivial cyclic subgroup C of G. See [5] for the details.

Next consider a finite groups consisting of prime order elements and the unit element. Such groups are classified by [2]. We call them groups of prime order elements, and an elementary abelian group $\left(C_{p}\right)^{k}$, a metacyclic group $Z_{p, q}$, where p, q are primes and $q \mid p-1$, and the alternating groups A_{4}, A_{5} are examples of groups of prime order elements.

Proposition 4.3. Let G be a group of prime order elements. If (V, W) is a \mathcal{C}_{G}-pair, then the Borsuk-Ulam inequality holds.

Proof. In this case, clearly $m(C)=1$ for any nontrivial cyclic subgroup C, hence $d(G) \geq 0$.

On the other hand, the quaternion group Q_{8} is a nonabelian counterexample. Set $Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$ as a subset of quaternions \mathbb{H}. All proper subgroups are normal and cyclic: $D_{1}=\langle i\rangle, D_{2}=\langle j\rangle, D_{3}=\langle k\rangle, C_{2}=\langle-1\rangle$ and 1 .

Figure 3. The subgroup lattice of Q_{8}
The quaternion group Q_{8} has four 1-dimensional irreducible representations U_{0}, U_{1}, U_{2}, U_{3}, where U_{0} denotes the trivial representation and $\operatorname{Ker} U_{i}=D_{i}$ for $i=1,2,3$. There is a one 4-dimensional (orthogonal) representation \mathbb{H} with the standard Q_{8} action. Let $W=\mathbb{H}$ and $V=2 U_{1} \oplus 2 U_{2} \oplus 2 U_{3}$. Then $d\left(C_{2}\right)=4, d\left(D_{i}\right)=0$ for $i=1,2,3$, whereas $d(G)=-2<0$.

Finally, we show Theorem 1.2.
Proof of Theorem 1.2. For a G-representation V and $C \in \mathcal{C}_{G}$, we denote by $V-V^{C}$ the complement of V^{C} in V as a C-representation and by $S\left(V-V^{C}\right)$ the unit sphere of $V-V^{C}$. Since $S(V) \backslash S(V)^{C}$ is C-homotopy equivalent to $S\left(V-V^{C}\right)$, it turns out that there is a C-map $\tilde{f}_{C}: S\left(V-V^{C}\right) \rightarrow S\left(W-W^{C}\right)$. Since any $C \in \mathcal{C}_{G}^{0}$ is of prime order, C acts freely on $S\left(V-V^{C}\right)$ and $S\left(W-W^{C}\right)$. The Borsuk-Ulam theorem for C_{p}-maps (see [3], for example) asserts that

$$
\operatorname{dim} S\left(V-V^{C}\right) \leq \operatorname{dim} S\left(W-W^{C}\right)
$$

Therefore we obtain that (V, W) is a \mathcal{C}_{G}-pair and thus the Borsuk-Ulam inequality

$$
\operatorname{dim} V-\operatorname{dim} V^{G} \leq \operatorname{dim} W-\operatorname{dim} W^{G}
$$

holds by Proposition 4.3.
As a finial remark, we notice the following fact. If there is a G-isovariant map

$$
f: S(V) \rightarrow S(W)
$$

then there is a C-map

$$
f_{C}: S(V) \backslash S(V)^{C} \rightarrow S(W) \backslash S(W)^{C}
$$

for every $C \in \mathcal{C}_{G}$; however, the converse is not correct; in fact, even a G-map f : $S(V) \rightarrow S(W)$ does not exist in general. For example, let $G=C_{p} \times C_{p}$. Then \mathcal{C}_{G}^{0} consists of $p+1$ cyclic subgroups of order p, say $H_{1}, H_{2}, \ldots, H_{N}(N=p+1 \geq 3)$. Set

$$
V=2 U_{H_{1}} \oplus U_{H_{2}} \oplus U_{H_{3}}, \quad W=U_{H_{1}} \oplus 2 U_{H_{2}} \oplus 2 U_{H_{3}}
$$

Then H_{i} acts freely on $S\left(V-V^{H_{i}}\right)$ and $S\left(W-W^{H_{i}}\right)$, and

$$
\operatorname{dim} S\left(V-V^{H_{i}}\right) \leq \operatorname{dim} S\left(W-W^{H_{i}}\right)
$$

Hence one can easily construct an H_{i}-map

$$
\bar{f}_{H_{i}}: S\left(V-V^{H_{i}}\right) \rightarrow S\left(W-W^{H_{i}}\right)
$$

for every $H_{i} \in \mathcal{C}_{G}^{0}, 1 \leq i \leq N$. Extending $\bar{f}_{H_{i}}$, one has an H_{i}-map

$$
f_{H_{i}}: S(V) \backslash S(V)^{H_{i}} \rightarrow S(W) \backslash S(W)^{H_{i}}
$$

On the other hand, there are no G-maps from $S(V)$ to $S(W)$. In fact, if there would be a G-map $f: S(V) \rightarrow S(W)$, then, by H_{1}-fixing, a C_{p}-map

$$
f^{H_{1}}: S\left(2 U_{H_{1}}\right)=S(V)^{H_{1}} \rightarrow S(W)^{H_{1}}=S\left(U_{H_{1}}\right)
$$

would be obtained; however, this contradicts the Borsuk-Ulam theorem which asserts that $\operatorname{dim} S(V)^{H_{1}} \leq \operatorname{dim} S(W)^{H_{1}}$. (See for example [4] for the Borsuk-Ulam theorem for $\left(C_{p}\right)^{k}$-maps.)

References

[1] M. Aigner, Combinatorial theory, Classics in Mathematics, Springer-Verlag, Berlin, 1997.
[2] C. K. Nah, M. Deaconescu, L. M. Lung, S. Wujie, Corrigendum and addendum to "Classification of finite groups with all elements of prime order", Proc. Amer. Math. Soc. 117 (1993), 1205-1207.
[3] T. Kobayashi, The Borsuk-Ulam theorem for a \mathbb{Z}_{q}-map from a \mathbb{Z}_{q}-space to $S^{2 n+1}$, Proc. Amer. Math. Soc. 97 (1986), 714-716.
[4] W. Marzantowicz, Borsuk-Ulam theorem for any compact Lie group, J. Lond. Math. Soc., II. Ser. 49 (1994),195-208.
[5] I Nagasaki and F. Ushitaki, New examples of the Borsuk-Ulam groups, RIMS Kôkyư̂oku Bessatsu B39 (2013), 109-119.
[6] A. G. Wasserman, Isovariant maps and the Borsuk-Ulam theorem, Topology Appli. 38 (1991), 155-161.

[^0]: ${ }^{1)}$ Department of Mathematics, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangicho, Sakyo-ku, Kyoto 606-0823, Japan. e-mail: nagasaki@koto.kpu-m.ac.jp

